1 | """Class Domain - |
---|
2 | 1D interval domains for finite-volume computations of the shallow water wave equation. |
---|
3 | |
---|
4 | This module contains a specialisation of class Generic_domain from module generic_domain.py consisting of methods specific to mixed rectangular Pipe/Channel flow using the Shallow Water Wave Equation. |
---|
5 | |
---|
6 | This particular modification of the Domain class implements the ability to vary the height and width of the 1D pipe that the water flows in. As a result the conserved variables are slightly different than previous implementations and so are the equations. In particular, the conserved quantites generalise the open channel flow conserved quantities. |
---|
7 | |
---|
8 | U_t + E_x = S |
---|
9 | |
---|
10 | where |
---|
11 | |
---|
12 | U = [A, Q] = [b*h, u*b*h] |
---|
13 | E = [Q, Q^2/A + A] |
---|
14 | S represents source terms forcing the system |
---|
15 | (e.g. gravity, boundary_stress, friction, wind stress, ...) |
---|
16 | gravity = -g*b*h*z_x |
---|
17 | boundary_stress = 1/2*g*b_x*h^2 |
---|
18 | |
---|
19 | and _t, _x, denote the derivative with respect to t and x respectiely. |
---|
20 | |
---|
21 | The quantities are |
---|
22 | |
---|
23 | symbol variable name explanation |
---|
24 | A area free surface equivalent wetted area = b*h [m^2] |
---|
25 | Q discharge flux of water = u*b*h [m^3/s] |
---|
26 | x x horizontal distance from origin [m] |
---|
27 | z elevation elevation of bottom of pipe [m] |
---|
28 | h height free surface equivalent water height above z [m] |
---|
29 | w stage equivalent absolute water level, w = z+h [m] |
---|
30 | u xvelocity speed in the x direction [m/s] |
---|
31 | uh xmomentum momentum in the x direction [m^2/s] |
---|
32 | b width width of pipe [m] |
---|
33 | t top height of pipe above z [m] |
---|
34 | eta mannings friction coefficient [to appear] |
---|
35 | |
---|
36 | The conserved quantities are A, Q |
---|
37 | -------------------------------------------------------------------------- |
---|
38 | For details see e.g. |
---|
39 | Christopher Zoppou and Stephen Roberts, |
---|
40 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
41 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
42 | |
---|
43 | Add paper details here |
---|
44 | |
---|
45 | John Jakeman, Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou, |
---|
46 | Padarn Wilson, Geoscience Australia, 2008 |
---|
47 | """ |
---|
48 | |
---|
49 | |
---|
50 | from anuga_1d.base.generic_domain import * |
---|
51 | import numpy |
---|
52 | |
---|
53 | |
---|
54 | #Shallow water pipe domain |
---|
55 | class Domain(Generic_domain): |
---|
56 | |
---|
57 | def __init__(self, coordinates, boundary = None, tagged_elements = None): |
---|
58 | |
---|
59 | conserved_quantities = ['area', 'discharge'] |
---|
60 | evolved_quantities = ['area', 'discharge', 'elevation', 'height', 'velocity','width','top','stage'] |
---|
61 | other_quantities = ['friction'] |
---|
62 | Generic_domain.__init__(self, |
---|
63 | coordinates = coordinates, |
---|
64 | boundary = boundary, |
---|
65 | conserved_quantities = conserved_quantities, |
---|
66 | evolved_quantities = evolved_quantities, |
---|
67 | other_quantities = other_quantities, |
---|
68 | tagged_elements = tagged_elements) |
---|
69 | |
---|
70 | from anuga_1d.config import minimum_allowed_height, g, h0 |
---|
71 | self.minimum_allowed_height = minimum_allowed_height |
---|
72 | self.g = g |
---|
73 | self.h0 = h0 |
---|
74 | self.setstageflag = False |
---|
75 | self.discontinousb = False |
---|
76 | |
---|
77 | |
---|
78 | # forcing terms gravity and boundary stress are included in the flux calculation |
---|
79 | #self.forcing_terms.append(gravity) |
---|
80 | #self.forcing_terms.append(boundary_stress) |
---|
81 | #self.forcing_terms.append(manning_friction) |
---|
82 | |
---|
83 | |
---|
84 | |
---|
85 | #Stored output |
---|
86 | self.store = True |
---|
87 | self.format = 'sww' |
---|
88 | self.smooth = True |
---|
89 | |
---|
90 | |
---|
91 | #Reduction operation for get_vertex_values |
---|
92 | from anuga_1d.base.util import mean |
---|
93 | self.reduction = mean |
---|
94 | #self.reduction = min #Looks better near steep slopes |
---|
95 | |
---|
96 | self.set_quantities_to_be_stored(['area','discharge']) |
---|
97 | |
---|
98 | self.__doc__ = 'channel_domain' |
---|
99 | |
---|
100 | self.check_integrity() |
---|
101 | |
---|
102 | |
---|
103 | def check_integrity(self): |
---|
104 | |
---|
105 | #Check that we are solving the shallow water wave equation |
---|
106 | |
---|
107 | msg = 'First conserved quantity must be "area"' |
---|
108 | assert self.conserved_quantities[0] == 'area', msg |
---|
109 | msg = 'Second conserved quantity must be "discharge"' |
---|
110 | assert self.conserved_quantities[1] == 'discharge', msg |
---|
111 | |
---|
112 | msg = 'First evolved quantity must be "area"' |
---|
113 | assert self.evolved_quantities[0] == 'area', msg |
---|
114 | msg = 'Second evolved quantity must be "discharge"' |
---|
115 | assert self.evolved_quantities[1] == 'discharge', msg |
---|
116 | msg = 'Third evolved quantity must be "elevation"' |
---|
117 | assert self.evolved_quantities[2] == 'elevation', msg |
---|
118 | msg = 'Fourth evolved quantity must be "height"' |
---|
119 | assert self.evolved_quantities[3] == 'height', msg |
---|
120 | msg = 'Fifth evolved quantity must be "velocity"' |
---|
121 | assert self.evolved_quantities[4] == 'velocity', msg |
---|
122 | msg = 'Sixth evolved quantity must be "width"' |
---|
123 | assert self.evolved_quantities[5] == 'width', msg |
---|
124 | msg = 'Seventh evolved quantity must be "top"' |
---|
125 | assert self.evolved_quantities[6] == 'top', msg |
---|
126 | msg = 'Eighth evolved quantity must be "stage"' |
---|
127 | assert self.evolved_quantities[7] == 'stage', msg |
---|
128 | |
---|
129 | Generic_domain.check_integrity(self) |
---|
130 | |
---|
131 | def compute_fluxes(self): |
---|
132 | #Call correct module function |
---|
133 | #(either from this module or C-extension) |
---|
134 | compute_fluxes_pipe(self) |
---|
135 | |
---|
136 | def distribute_to_vertices_and_edges(self): |
---|
137 | #Call correct module function |
---|
138 | #(either from this module or C-extension) |
---|
139 | distribute_to_vertices_and_edges_limit_a_d(self) |
---|
140 | |
---|
141 | |
---|
142 | #=============== End of Pipe Domain =============================== |
---|
143 | |
---|
144 | #----------------------------------- |
---|
145 | # Compute flux definition with pipe |
---|
146 | #----------------------------------- |
---|
147 | def compute_fluxes_pipe(domain): |
---|
148 | import sys |
---|
149 | timestep = float(sys.maxint) |
---|
150 | |
---|
151 | area = domain.quantities['area'] |
---|
152 | discharge = domain.quantities['discharge'] |
---|
153 | bed = domain.quantities['elevation'] |
---|
154 | height = domain.quantities['height'] |
---|
155 | velocity = domain.quantities['velocity'] |
---|
156 | width = domain.quantities['width'] |
---|
157 | top = domain.quantities['top'] |
---|
158 | |
---|
159 | |
---|
160 | from anuga_1d.pipe.pipe_domain_ext import compute_fluxes_pipe_ext |
---|
161 | domain.flux_timestep = compute_fluxes_pipe_ext(timestep,domain,area,discharge,bed,height,velocity,width,top) |
---|
162 | |
---|
163 | #----------------------------------------------------------------------- |
---|
164 | # Distribute to verticies with stage reconstructed and then extrapolated |
---|
165 | #----------------------------------------------------------------------- |
---|
166 | def distribute_to_vertices_and_edges_limit_a_d(domain): |
---|
167 | |
---|
168 | #Remove very thin layers of water |
---|
169 | #protect_against_infinitesimal_and_negative_heights(domain) |
---|
170 | |
---|
171 | |
---|
172 | |
---|
173 | import sys |
---|
174 | from anuga_1d.config import epsilon, h0 |
---|
175 | |
---|
176 | |
---|
177 | N = domain.number_of_elements |
---|
178 | |
---|
179 | #Shortcuts |
---|
180 | area = domain.quantities['area'] |
---|
181 | discharge = domain.quantities['discharge'] |
---|
182 | bed = domain.quantities['elevation'] |
---|
183 | height = domain.quantities['height'] |
---|
184 | velocity = domain.quantities['velocity'] |
---|
185 | width = domain.quantities['width'] |
---|
186 | top = domain.quantities['top'] |
---|
187 | stage = domain.quantities['stage'] |
---|
188 | |
---|
189 | #Arrays |
---|
190 | a_C = area.centroid_values |
---|
191 | d_C = discharge.centroid_values |
---|
192 | z_C = bed.centroid_values |
---|
193 | h_C = height.centroid_values |
---|
194 | u_C = velocity.centroid_values |
---|
195 | b_C = width.centroid_values |
---|
196 | t_C = top.centroid_values |
---|
197 | w_C = stage.centroid_values |
---|
198 | |
---|
199 | if domain.setstageflag: |
---|
200 | a_C[:,] = (w_C-z_C)*b_C |
---|
201 | domain.setstageflag = False |
---|
202 | |
---|
203 | # Paul: Same for top? |
---|
204 | if domain.discontinousb: |
---|
205 | width.extrapolate_second_order() |
---|
206 | |
---|
207 | |
---|
208 | h0 = 1.0e-12 |
---|
209 | |
---|
210 | # Paul: How does top (i.e. t_C) affect these? |
---|
211 | h_C[:] = numpy.where( (a_C>h0) | (b_C>h0), a_C/(b_C+h0/b_C), 0.0 ) |
---|
212 | u_C[:] = numpy.where( (a_C>h0) | (b_C>h0), d_C/(a_C+h0/a_C), 0.0 ) |
---|
213 | |
---|
214 | a_C[:] = numpy.where( (a_C>h0) | (b_C>h0), a_C, 0.0 ) |
---|
215 | b_C[:] = numpy.where( (a_C>h0) | (b_C>h0), b_C, 0.0 ) |
---|
216 | t_C[:] = numpy.where( (a_C>h0) | (b_C>h0), t_C, 0.0 ) |
---|
217 | d_C[:] = numpy.where( (a_C>h0) | (b_C>h0), d_C, 0.0 ) |
---|
218 | |
---|
219 | w_C[:] = h_C + z_C |
---|
220 | |
---|
221 | |
---|
222 | # Paul: same for top? |
---|
223 | bed.extrapolate_second_order() |
---|
224 | |
---|
225 | for name in ['velocity','stage']: |
---|
226 | Q = domain.quantities[name] |
---|
227 | if domain.order == 1: |
---|
228 | Q.extrapolate_first_order() |
---|
229 | elif domain.order == 2: |
---|
230 | Q.extrapolate_second_order() |
---|
231 | else: |
---|
232 | raise 'Unknown order' |
---|
233 | |
---|
234 | |
---|
235 | a_V = area.vertex_values |
---|
236 | w_V = stage.vertex_values |
---|
237 | z_V = bed.vertex_values |
---|
238 | h_V = height.vertex_values |
---|
239 | u_V = velocity.vertex_values |
---|
240 | d_V = discharge.vertex_values |
---|
241 | b_V = width.vertex_values |
---|
242 | t_V = top.vertex_values |
---|
243 | |
---|
244 | |
---|
245 | h_V[:] = w_V-z_V |
---|
246 | |
---|
247 | w_V[:] = numpy.where(h_V > h0, w_V, z_V) |
---|
248 | h_V[:] = numpy.where(h_V > h0, h_V, 0.0) |
---|
249 | a_V[:] = b_V*h_V |
---|
250 | d_V[:] = u_V*a_V |
---|
251 | |
---|
252 | |
---|
253 | return |
---|
254 | |
---|
255 | |
---|
256 | #-------------------------------------------------------- |
---|
257 | #Boundaries - specific to the pipe_domain |
---|
258 | #-------------------------------------------------------- |
---|
259 | class Reflective_boundary(Boundary): |
---|
260 | """Reflective boundary returns same conserved quantities as |
---|
261 | those present in its neighbour volume but reflected. |
---|
262 | |
---|
263 | This class is specific to the shallow water equation as it |
---|
264 | works with the momentum quantities assumed to be the second |
---|
265 | and third conserved quantities. |
---|
266 | """ |
---|
267 | |
---|
268 | def __init__(self, domain = None): |
---|
269 | Boundary.__init__(self) |
---|
270 | |
---|
271 | if domain is None: |
---|
272 | msg = 'Domain must be specified for reflective boundary' |
---|
273 | raise msg |
---|
274 | |
---|
275 | #Handy shorthands |
---|
276 | self.normals = domain.normals |
---|
277 | self.area = domain.quantities['area'].vertex_values |
---|
278 | self.discharge = domain.quantities['discharge'].vertex_values |
---|
279 | self.bed = domain.quantities['elevation'].vertex_values |
---|
280 | self.height = domain.quantities['height'].vertex_values |
---|
281 | self.velocity = domain.quantities['velocity'].vertex_values |
---|
282 | self.width = domain.quantities['width'].vertex_values |
---|
283 | self.top = domain.quantities['top'].vertex_values |
---|
284 | self.stage = domain.quantities['stage'].vertex_values |
---|
285 | |
---|
286 | self.evolved_quantities = numpy.zeros(8, numpy.float) |
---|
287 | |
---|
288 | def __repr__(self): |
---|
289 | return 'Reflective_boundary' |
---|
290 | |
---|
291 | |
---|
292 | def evaluate(self, vol_id, edge_id): |
---|
293 | """Reflective boundaries reverses the outward momentum |
---|
294 | of the volume they serve. |
---|
295 | """ |
---|
296 | |
---|
297 | q = self.evolved_quantities |
---|
298 | q[0] = self.area[vol_id, edge_id] |
---|
299 | q[1] = -self.discharge[vol_id, edge_id] |
---|
300 | q[2] = self.bed[vol_id, edge_id] |
---|
301 | q[3] = self.height[vol_id, edge_id] |
---|
302 | q[4] = -self.velocity[vol_id, edge_id] |
---|
303 | q[5] = self.width[vol_id,edge_id] |
---|
304 | q[6] = self.top[vol_id,edge_id] |
---|
305 | q[7] = self.stage[vol_id,edge_id] |
---|
306 | |
---|
307 | return q |
---|
308 | |
---|
309 | class Dirichlet_boundary(Boundary): |
---|
310 | """Dirichlet boundary returns constant values for the |
---|
311 | conserved quantities |
---|
312 | if k>5 and k<15: |
---|
313 | print discharge_ud[k],-g*zx*avg_h*avg_b |
---|
314 | discharge_ud[k] +=-g*zx*avg_h*avg_b """ |
---|
315 | |
---|
316 | |
---|
317 | def __init__(self, evolved_quantities=None): |
---|
318 | Boundary.__init__(self) |
---|
319 | |
---|
320 | if evolved_quantities is None: |
---|
321 | msg = 'Must specify one value for each evolved quantity' |
---|
322 | raise msg |
---|
323 | |
---|
324 | assert len(evolved_quantities) == 8 |
---|
325 | |
---|
326 | self.evolved_quantities=numpy.array(evolved_quantities,numpy.float) |
---|
327 | |
---|
328 | def __repr__(self): |
---|
329 | return 'Dirichlet boundary (%s)' %self.evolved_quantities |
---|
330 | |
---|
331 | def evaluate(self, vol_id=None, edge_id=None): |
---|
332 | return self.evolved_quantities |
---|
333 | |
---|
334 | |
---|
335 | #---------------------------- |
---|
336 | #Standard forcing terms: |
---|
337 | #--------------------------- |
---|
338 | def gravity(domain): |
---|
339 | """Apply gravitational pull in the presence of bed slope |
---|
340 | """ |
---|
341 | |
---|
342 | from util import gradient |
---|
343 | from Numeric import zeros, Float, array, sum |
---|
344 | |
---|
345 | |
---|
346 | |
---|
347 | Area = domain.quantities['area'] |
---|
348 | Discharge = domain.quantities['discharge'] |
---|
349 | Elevation = domain.quantities['elevation'] |
---|
350 | Height = domain.quantities['height'] |
---|
351 | Width = domain.quantities['width'] |
---|
352 | Top = domain.quantities['top'] |
---|
353 | |
---|
354 | discharge_ud = Discharge.explicit_update |
---|
355 | |
---|
356 | |
---|
357 | |
---|
358 | h = Height.vertex_values |
---|
359 | b = Width.vertex_values |
---|
360 | t = Top.vertex_values |
---|
361 | a = Area.vertex_values |
---|
362 | z = Elevation.vertex_values |
---|
363 | |
---|
364 | x = domain.get_vertex_coordinates() |
---|
365 | g = domain.g |
---|
366 | for k in range(domain.number_of_elements): |
---|
367 | avg_h = 0.5*(h[k,0] + h[k,1]) |
---|
368 | avg_b = 0.5*(b[k,0] + b[k,1]) |
---|
369 | avg_t = 0.5*(t[k,0] + t[k,1]) |
---|
370 | |
---|
371 | #Compute bed slope |
---|
372 | x0, x1 = x[k,:] |
---|
373 | z0, z1 = z[k,:] |
---|
374 | zx = gradient(x0, x1, z0, z1) |
---|
375 | |
---|
376 | #Update momentum (explicit update is reset to source values) |
---|
377 | discharge_ud[k]+= -g*zx*avg_h*avg_b |
---|
378 | |
---|
379 | |
---|
380 | def boundary_stress(domain): |
---|
381 | |
---|
382 | from util import gradient |
---|
383 | from Numeric import zeros, Float, array, sum |
---|
384 | |
---|
385 | Area = domain.quantities['area'] |
---|
386 | Discharge = domain.quantities['discharge'] |
---|
387 | Elevation = domain.quantities['elevation'] |
---|
388 | Height = domain.quantities['height'] |
---|
389 | Width = domain.quantities['width'] |
---|
390 | Top = domain.quantities['top'] |
---|
391 | |
---|
392 | discharge_ud = Discharge.explicit_update |
---|
393 | |
---|
394 | h = Height.vertex_values |
---|
395 | b = Width.vertex_values |
---|
396 | t = Top.vertex_values |
---|
397 | a = Area.vertex_values |
---|
398 | z = Elevation.vertex_values |
---|
399 | |
---|
400 | x = domain.get_vertex_coordinates() |
---|
401 | g = domain.g |
---|
402 | |
---|
403 | for k in range(domain.number_of_elements): |
---|
404 | avg_h = 0.5*(h[k,0] + h[k,1]) |
---|
405 | |
---|
406 | |
---|
407 | #Compute bed slope |
---|
408 | x0, x1 = x[k,:] |
---|
409 | b0, b1 = b[k,:] |
---|
410 | bx = gradient(x0, x1, b0, b1) |
---|
411 | |
---|
412 | #Update momentum (explicit update is reset to source values) |
---|
413 | discharge_ud[k] += 0.5*g*bx*avg_h*avg_h |
---|
414 | #stage_ud[k] = 0.0 |
---|
415 | |
---|
416 | |
---|
417 | def manning_friction(domain): |
---|
418 | """Apply (Manning) friction to water momentum |
---|
419 | """ |
---|
420 | |
---|
421 | from math import sqrt |
---|
422 | |
---|
423 | w = domain.quantities['stage'].centroid_values |
---|
424 | z = domain.quantities['elevation'].centroid_values |
---|
425 | h = w-z |
---|
426 | |
---|
427 | uh = domain.quantities['xmomentum'].centroid_values |
---|
428 | eta = domain.quantities['friction'].centroid_values |
---|
429 | |
---|
430 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
431 | |
---|
432 | N = domain.number_of_elements |
---|
433 | eps = domain.minimum_allowed_height |
---|
434 | g = domain.g |
---|
435 | |
---|
436 | for k in range(N): |
---|
437 | if eta[k] >= eps: |
---|
438 | if h[k] >= eps: |
---|
439 | #S = -g * eta[k]**2 * sqrt((uh[k]**2 + vh[k]**2)) |
---|
440 | S = -g * eta[k]**2 * uh[k] |
---|
441 | S /= h[k]**(7.0/3) |
---|
442 | |
---|
443 | #Update momentum |
---|
444 | xmom_update[k] += S*uh[k] |
---|
445 | #ymom_update[k] += S*vh[k] |
---|
446 | |
---|
447 | def linear_friction(domain): |
---|
448 | """Apply linear friction to water momentum |
---|
449 | |
---|
450 | Assumes quantity: 'linear_friction' to be present |
---|
451 | """ |
---|
452 | |
---|
453 | from math import sqrt |
---|
454 | |
---|
455 | w = domain.quantities['stage'].centroid_values |
---|
456 | z = domain.quantities['elevation'].centroid_values |
---|
457 | h = w-z |
---|
458 | |
---|
459 | uh = domain.quantities['xmomentum'].centroid_values |
---|
460 | tau = domain.quantities['linear_friction'].centroid_values |
---|
461 | |
---|
462 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
463 | |
---|
464 | N = domain.number_of_elements |
---|
465 | eps = domain.minimum_allowed_height |
---|
466 | |
---|
467 | for k in range(N): |
---|
468 | if tau[k] >= eps: |
---|
469 | if h[k] >= eps: |
---|
470 | S = -tau[k]/h[k] |
---|
471 | |
---|
472 | #Update momentum |
---|
473 | xmom_update[k] += S*uh[k] |
---|
474 | |
---|
475 | |
---|
476 | |
---|
477 | |
---|
478 | def linearb(domain): |
---|
479 | |
---|
480 | bC = domain.quantities['width'].vertex_values |
---|
481 | |
---|
482 | for i in range(len(bC)-1): |
---|
483 | temp= 0.5*(bC[i,1]+bC[i+1,0]) |
---|
484 | bC[i,1]=temp |
---|
485 | bC[i+1,0]=temp |
---|
486 | |
---|
487 | |
---|
488 | |
---|