[7884] | 1 | import os |
---|
| 2 | from math import sqrt, pi |
---|
| 3 | import numpy |
---|
| 4 | import time |
---|
| 5 | #from Numeric import allclose, array, zeros, ones, Float, take, sqrt |
---|
| 6 | |
---|
| 7 | |
---|
| 8 | |
---|
| 9 | from anuga_1d.sww.sww_domain import * |
---|
| 10 | from anuga_1d.config import g, epsilon |
---|
| 11 | from anuga_1d.base.generic_mesh import uniform_mesh |
---|
| 12 | |
---|
| 13 | |
---|
| 14 | def run_evolve(): |
---|
| 15 | |
---|
| 16 | h1 = 10.0 |
---|
| 17 | h0 = 0.01 |
---|
| 18 | |
---|
| 19 | def analytical_sol(C,t): |
---|
| 20 | |
---|
| 21 | #t = 0.0 # time (s) |
---|
| 22 | # gravity (m/s^2) |
---|
| 23 | #h1 = 10.0 # depth upstream (m) |
---|
| 24 | #h0 = 0.0 # depth downstream (m) |
---|
| 25 | L = 2000.0 # length of stream/domain (m) |
---|
| 26 | n = len(C) # number of cells |
---|
| 27 | |
---|
| 28 | u = zeros(n,Float) |
---|
| 29 | h = zeros(n,Float) |
---|
| 30 | x = C-3*L/4.0 |
---|
| 31 | |
---|
| 32 | |
---|
| 33 | for i in range(n): |
---|
| 34 | # Calculate Analytical Solution at time t > 0 |
---|
| 35 | u3 = 2.0/3.0*(sqrt(g*h1)+x[i]/t) |
---|
| 36 | h3 = 4.0/(9.0*g)*(sqrt(g*h1)-x[i]/(2.0*t))*(sqrt(g*h1)-x[i]/(2.0*t)) |
---|
| 37 | u3_ = 2.0/3.0*((x[i]+L/2.0)/t-sqrt(g*h1)) |
---|
| 38 | h3_ = 1.0/(9.0*g)*((x[i]+L/2.0)/t+2*sqrt(g*h1))*((x[i]+L/2.0)/t+2*sqrt(g*h1)) |
---|
| 39 | |
---|
| 40 | if ( x[i] <= -1*L/2.0+2*(-sqrt(g*h1)*t)): |
---|
| 41 | u[i] = 0.0 |
---|
| 42 | h[i] = h0 |
---|
| 43 | elif ( x[i] <= -1*L/2.0-(-sqrt(g*h1)*t)): |
---|
| 44 | u[i] = u3_ |
---|
| 45 | h[i] = h3_ |
---|
| 46 | |
---|
| 47 | elif ( x[i] <= -t*sqrt(g*h1) ): |
---|
| 48 | u[i] = 0.0 |
---|
| 49 | h[i] = h1 |
---|
| 50 | elif ( x[i] <= 2.0*t*sqrt(g*h1) ): |
---|
| 51 | u[i] = u3 |
---|
| 52 | h[i] = h3 |
---|
| 53 | else: |
---|
| 54 | u[i] = 0.0 |
---|
| 55 | h[i] = h0 |
---|
| 56 | |
---|
| 57 | return h , u*h, u |
---|
| 58 | |
---|
| 59 | |
---|
| 60 | |
---|
| 61 | def stage(x): |
---|
| 62 | import numpy |
---|
| 63 | |
---|
| 64 | y = numpy.where( (x>=L/4.0) & (x<=3*L/4.0), h1 , h0) |
---|
| 65 | |
---|
| 66 | # for i in range(len(x)): |
---|
| 67 | # if x[i]<=L/4.0: |
---|
| 68 | # y[i] = h0 |
---|
| 69 | # elif x[i]<=3*L/4.0: |
---|
| 70 | # y[i] = h1 |
---|
| 71 | # else: |
---|
| 72 | # y[i] = h0 |
---|
| 73 | return y |
---|
| 74 | |
---|
| 75 | |
---|
| 76 | |
---|
| 77 | |
---|
| 78 | print "TEST 1D-SOLUTION III -- DRY BED" |
---|
| 79 | |
---|
| 80 | |
---|
| 81 | finaltime = 4.0 |
---|
| 82 | yieldstep = 0.1 |
---|
| 83 | L = 2000.0 # Length of channel (m) |
---|
| 84 | |
---|
| 85 | k = 0 |
---|
| 86 | |
---|
| 87 | N = 800 |
---|
| 88 | print "Evaluating domain with %d cells" %N |
---|
| 89 | domain = Domain(*uniform_mesh(N)) |
---|
| 90 | |
---|
| 91 | domain.set_quantity('stage', stage) |
---|
| 92 | |
---|
| 93 | Br = Reflective_boundary(domain) |
---|
| 94 | |
---|
| 95 | domain.set_boundary({'left': Br, 'right' : Br}) |
---|
| 96 | domain.order = 2 |
---|
| 97 | domain.set_timestepping_method('rk2') |
---|
| 98 | domain.set_CFL(1.0) |
---|
| 99 | domain.set_limiter("minmod") |
---|
| 100 | #domain.h0=0.0001 |
---|
| 101 | |
---|
| 102 | t0 = time.time() |
---|
| 103 | |
---|
| 104 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
| 105 | domain.write_time() |
---|
| 106 | |
---|
| 107 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
| 108 | |
---|
| 109 | |
---|
| 110 | import cProfile |
---|
| 111 | cProfile.run('run_evolve()', 'dry_dam_prof') |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | import pstats |
---|
| 115 | p = pstats.Stats('dry_dam_prof') |
---|
| 116 | |
---|
| 117 | #p.strip_dirs().sort_stats(-1).print_stats(20) |
---|
| 118 | |
---|
| 119 | p.sort_stats('cumulative').print_stats(30) |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | |
---|