1 | """Script for running a tsunami inundation scenario for Cairns, QLD Australia. |
---|
2 | |
---|
3 | Source data such as elevation and boundary data is assumed to be available in |
---|
4 | directories specified by project.py |
---|
5 | The output sww file is stored in directory named after the scenario, i.e |
---|
6 | slide or fixed_wave. |
---|
7 | |
---|
8 | The scenario is defined by a triangular mesh created from project.polygon, |
---|
9 | the elevation data and a tsunami wave generated by a submarine mass failure. |
---|
10 | |
---|
11 | Ole Nielsen and Duncan Gray, GA - 2005 and Jane Sexton and |
---|
12 | Nick Bartzis, GA - 2006 |
---|
13 | """ |
---|
14 | |
---|
15 | def convert_arcgis_latlon_list_to_utm(points): |
---|
16 | #Used because arc gis produced csv files put lat lon in |
---|
17 | #reverse order to those accpeted by convert_latlon_to_utm() |
---|
18 | |
---|
19 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
20 | from anuga.coordinate_transforms.redfearn import redfearn |
---|
21 | old_geo = Geo_reference() |
---|
22 | utm_points = [] |
---|
23 | for point in points: |
---|
24 | zone, easting, northing = redfearn(float(point[1]),float(point[0])) |
---|
25 | new_geo = Geo_reference(zone) |
---|
26 | old_geo.reconcile_zones(new_geo) |
---|
27 | utm_points.append([easting,northing]) |
---|
28 | |
---|
29 | return utm_points, old_geo.get_zone() |
---|
30 | |
---|
31 | #------------------------------------------------------------------------------ |
---|
32 | # Import necessary modules |
---|
33 | #------------------------------------------------------------------------------ |
---|
34 | |
---|
35 | # Standard modules |
---|
36 | import os |
---|
37 | import time |
---|
38 | import sys |
---|
39 | |
---|
40 | # Related major packages |
---|
41 | from anuga.shallow_water import Domain |
---|
42 | from anuga.shallow_water import Reflective_boundary |
---|
43 | from anuga.shallow_water import Dirichlet_boundary |
---|
44 | from anuga.shallow_water import Time_boundary |
---|
45 | from anuga.shallow_water import File_boundary |
---|
46 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
47 | from anuga.shallow_water.data_manager import convert_dem_from_ascii2netcdf, ferret2sww |
---|
48 | from anuga.shallow_water.data_manager import dem2pts |
---|
49 | from anuga.coordinate_transforms.redfearn import convert_from_latlon_to_utm |
---|
50 | #from anuga.fit_interpolate.fit import fit_to_mesh_file (does not exist) |
---|
51 | |
---|
52 | # Application specific imports |
---|
53 | import project # Definition of file names and polygons |
---|
54 | |
---|
55 | |
---|
56 | #------------------------------------------------------------------------------ |
---|
57 | # Define scenario as either slide or fixed_wave. |
---|
58 | #------------------------------------------------------------------------------ |
---|
59 | |
---|
60 | #scenario = 'coseismic' |
---|
61 | scenario = 'fixed_wave' |
---|
62 | |
---|
63 | if os.access(scenario, os.F_OK) == 0: |
---|
64 | os.mkdir(scenario) |
---|
65 | basename = scenario + 'source' |
---|
66 | |
---|
67 | |
---|
68 | #------------------------------------------------------------------------------ |
---|
69 | # Preparation of topographic data |
---|
70 | # Convert ASC 2 DEM 2 PTS using source data and store result in source data |
---|
71 | #------------------------------------------------------------------------------ |
---|
72 | |
---|
73 | # Filenames |
---|
74 | dem_name = 'boxingday' |
---|
75 | |
---|
76 | # Create DEM from asc data |
---|
77 | #convert_dem_from_ascii2netcdf(dem_name, use_cache=True, verbose=True) |
---|
78 | # Create pts file for onshore DEM |
---|
79 | #dem2pts(dem_name, use_cache=True, verbose=True) |
---|
80 | |
---|
81 | |
---|
82 | #------------------------------------------------------------------------------ |
---|
83 | # Create the triangular mesh based on overall clipping polygon with a tagged |
---|
84 | # boundary and interior regions defined in project.py along with |
---|
85 | # resolutions (maximal area of per triangle) for each polygon |
---|
86 | #------------------------------------------------------------------------------ |
---|
87 | |
---|
88 | remainder_res = 10000000 |
---|
89 | islands_res = 100000 |
---|
90 | cairns_res = 100000 |
---|
91 | shallow_res = 500000 |
---|
92 | #interior_regions = [[project.poly_cairns, cairns_res]#, |
---|
93 | # [project.poly_island0, islands_res], |
---|
94 | # [project.poly_island1, islands_res], |
---|
95 | # [project.poly_island2, islands_res], |
---|
96 | # [project.poly_island3, islands_res], |
---|
97 | # [project.poly_shallow, shallow_res]] |
---|
98 | |
---|
99 | # filenames |
---|
100 | meshname = project.meshname + '.tsh' |
---|
101 | mesh_elevname = project.mesh_elevname + '.tsh' |
---|
102 | |
---|
103 | bounding_polygon, zone = convert_arcgis_latlon_list_to_utm(project.bounding_polygon_latlon) |
---|
104 | |
---|
105 | from caching import cache |
---|
106 | print 'start create mesh from regions' |
---|
107 | |
---|
108 | if scenario == 'coseismic': |
---|
109 | _ = cache(create_mesh_from_regions, |
---|
110 | bounding_polygon, |
---|
111 | {'boundary_tags': {'one': [0], 'two': [1], |
---|
112 | 'three': [2], 'four': [3], |
---|
113 | 'five': [4], 'six': [5], |
---|
114 | 'seven': [6], 'eight': [7], |
---|
115 | 'nine': [8], 'ten': [9], |
---|
116 | 'eleven': [10], 'twelve': [11], |
---|
117 | 'thirteen': [12], 'fourteen': [13]}, |
---|
118 | 'maximum_triangle_area': 5000000, |
---|
119 | 'filename': meshname},#, |
---|
120 | #'interior_regions': interior_regions}, |
---|
121 | verbose = True |
---|
122 | #, evaluate=True |
---|
123 | ) |
---|
124 | |
---|
125 | if scenario == 'fixed_wave': |
---|
126 | south = 7.40911081272 |
---|
127 | north = 8.71484358635 |
---|
128 | east = 99.1683687224 |
---|
129 | west = 97.513856322 |
---|
130 | points = [[south,west],[south,east],[north,east],[north,west]] |
---|
131 | |
---|
132 | bounding_polygon,zone=convert_from_latlon_to_utm(points) |
---|
133 | |
---|
134 | _ = cache(create_mesh_from_regions, |
---|
135 | bounding_polygon, |
---|
136 | {'boundary_tags': {'ocean_west': [0], 'bottom': [1], |
---|
137 | 'onshore': [2], 'top': [3]}, |
---|
138 | 'maximum_triangle_area': 500000000, |
---|
139 | 'filename': meshname},#, |
---|
140 | #'interior_regions': interior_regions}, |
---|
141 | verbose = True |
---|
142 | #, evaluate=True |
---|
143 | ) |
---|
144 | |
---|
145 | ## cache(fit_to_mesh_file,(meshname, |
---|
146 | ## project.combined_dir_name + '.pts', |
---|
147 | ## mesh_elevname), |
---|
148 | ## #{'verbose': True}, |
---|
149 | ## verbose = False |
---|
150 | ## ) |
---|
151 | |
---|
152 | #------------------------------------------------------------------------------ |
---|
153 | # Setup computational domain |
---|
154 | #------------------------------------------------------------------------------ |
---|
155 | |
---|
156 | domain = Domain(meshname, use_cache=False, verbose=True) |
---|
157 | |
---|
158 | print 'Number of triangles = ', len(domain) |
---|
159 | print 'The extent is ', domain.get_extent() |
---|
160 | print domain.statistics() |
---|
161 | |
---|
162 | domain.set_name(basename) |
---|
163 | domain.set_datadir(scenario) |
---|
164 | domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) |
---|
165 | domain.set_minimum_storable_height(0.01) |
---|
166 | |
---|
167 | |
---|
168 | #------------------------------------------------------------------------------ |
---|
169 | # Setup initial conditions |
---|
170 | #------------------------------------------------------------------------------ |
---|
171 | |
---|
172 | def elevation(x,y): |
---|
173 | return -10.0 |
---|
174 | |
---|
175 | tide = 0.0 |
---|
176 | domain.set_quantity('stage', tide) |
---|
177 | domain.set_quantity('friction', 0.0) |
---|
178 | |
---|
179 | if scenario == 'fixed_wave': |
---|
180 | # test with coarser bathymetry |
---|
181 | domain.set_quantity('elevation', |
---|
182 | #filename = 'thaicoas_9.pts', |
---|
183 | elevation, |
---|
184 | use_cache=True, |
---|
185 | verbose=True, |
---|
186 | alpha=0.1) |
---|
187 | |
---|
188 | if scenario == 'coseismic': |
---|
189 | domain.set_quantity('elevation', |
---|
190 | filename=project.combined_dir_name + '.pts', |
---|
191 | use_cache=True, |
---|
192 | verbose=True, |
---|
193 | alpha=0.1) |
---|
194 | #------------------------------------------------------------------------------ |
---|
195 | # Setup boundary conditions |
---|
196 | #------------------------------------------------------------------------------ |
---|
197 | |
---|
198 | print 'start ferret2sww' |
---|
199 | south = project.south |
---|
200 | north = project.north |
---|
201 | west = project.west |
---|
202 | east = project.east |
---|
203 | |
---|
204 | """ |
---|
205 | tide = 0.0 |
---|
206 | # Note only need to do when an SWW file for the MOST boundary doesn't exist |
---|
207 | cache(ferret2sww, |
---|
208 | (project.boundary_most_in, |
---|
209 | project.boundary_most_out), |
---|
210 | {'verbose': True, |
---|
211 | 'minlat': south, |
---|
212 | 'maxlat': north, |
---|
213 | 'minlon': west, |
---|
214 | 'maxlon': east, |
---|
215 | # 'origin': project.mesh_origin, |
---|
216 | 'origin': domain.geo_reference.get_origin(), |
---|
217 | 'mean_stage': tide, |
---|
218 | 'zscale': 10, #Enhance tsunami (Does this affect result) |
---|
219 | 'fail_on_NaN': False, |
---|
220 | 'inverted_bathymetry': True}, |
---|
221 | #evaluate = True, |
---|
222 | verbose = True)#, |
---|
223 | #dependencies = 'most_results' + '.sww') |
---|
224 | |
---|
225 | """ |
---|
226 | print 'Available boundary tags', domain.get_boundary_tags() |
---|
227 | |
---|
228 | #Bf = File_boundary('most_results'+'.sww', |
---|
229 | # domain, verbose = True) |
---|
230 | Br = Reflective_boundary(domain) |
---|
231 | Bd = Dirichlet_boundary([tide,0,0]) |
---|
232 | Bw = Time_boundary(domain = domain, |
---|
233 | f=lambda t: [(60<t<3660)*50, 0, 0]) |
---|
234 | |
---|
235 | # 60 min square wave starting at 1 min, 50m high |
---|
236 | if scenario == 'fixed_wave': |
---|
237 | domain.set_boundary({'ocean_west': Br, |
---|
238 | 'bottom': Br, |
---|
239 | 'onshore': Br, |
---|
240 | 'top': Br}) |
---|
241 | |
---|
242 | # boundary conditions for slide scenario |
---|
243 | if scenario == 'coseismic': |
---|
244 | domain.set_boundary( {'one': Bf,'two': Bf, 'three': Bf, 'four': Bf, |
---|
245 | 'five': Bf, 'six': Bd, 'seven': Bd, 'eight': Bf, |
---|
246 | 'nine': Bf, 'ten': Bd, 'eleven': Bd, 'twelve': Bf, |
---|
247 | 'thireteen': Bf, 'fourteen': Bf}) |
---|
248 | |
---|
249 | |
---|
250 | #------------------------------------------------------------------------------ |
---|
251 | # Evolve system through time |
---|
252 | #------------------------------------------------------------------------------ |
---|
253 | #domain.visualise = True |
---|
254 | #domain.visualise_color_stage = True |
---|
255 | |
---|
256 | import time |
---|
257 | t0 = time.time() |
---|
258 | |
---|
259 | from Numeric import allclose |
---|
260 | from anuga.abstract_2d_finite_volumes.quantity import Quantity |
---|
261 | |
---|
262 | if scenario == 'cosesimic': |
---|
263 | |
---|
264 | for t in domain.evolve(yieldstep = 10, finaltime = 60): |
---|
265 | print domain.quantities['elevation'].vertex_values |
---|
266 | domain.write_time() |
---|
267 | |
---|
268 | for t in domain.evolve(yieldstep = 600, finaltime = 21600, |
---|
269 | skip_initial_step = True): |
---|
270 | domain.write_time() |
---|
271 | domain.write_boundary_statistics(tags = 'ocean_west') |
---|
272 | |
---|
273 | if scenario == 'fixed_wave': |
---|
274 | |
---|
275 | # save every two mins leading up to wave approaching land |
---|
276 | for t in domain.evolve(yieldstep = 10, finaltime = 50): |
---|
277 | print domain.quantities['elevation'].vertex_values |
---|
278 | print domain.quantities['stage'].vertex_values |
---|
279 | |
---|
280 | domain.write_time() |
---|
281 | |
---|
282 | #save every 30 secs as wave starts inundating ashore |
---|
283 | #for t in domain.evolve(yieldstep = 10, finaltime = 10000, |
---|
284 | # skip_initial_step = True): |
---|
285 | # domain.write_time() |
---|
286 | |
---|
287 | print 'That took %.2f seconds' %(time.time()-t0) |
---|