1 | """Runup example from the manual, slightly modified |
---|
2 | """ |
---|
3 | #--------- |
---|
4 | #Import Modules |
---|
5 | #-------- |
---|
6 | from sys import path |
---|
7 | import anuga |
---|
8 | |
---|
9 | import numpy |
---|
10 | |
---|
11 | import struct |
---|
12 | #import scipy |
---|
13 | |
---|
14 | #from Numeric import * |
---|
15 | |
---|
16 | from math import sin, pi, exp |
---|
17 | #from anuga.shallow_water_balanced2.swb2_domain import Domain as Domain |
---|
18 | #from anuga.shallow_water.shallow_water_domain import Domain as Domain |
---|
19 | #from shallow_water_balanced_steve.swb_domain import * |
---|
20 | #import shallow_water_balanced_steve.swb_domain |
---|
21 | #from shallow_water_balanced_steve.swb_domain import Domain as Domain |
---|
22 | #path.append('/home/gareth/storage/anuga_clean/anuga_jan12/trunk/anuga_work/shallow_water_balanced_steve') |
---|
23 | #from swb_domain import * |
---|
24 | #path.append('/home/gareth/storage/anuga_clean/anuga_jan12/trunk/anuga_work/development/gareth/balanced_basic') |
---|
25 | from balanced_basic.swb2_domain import * |
---|
26 | #--------- |
---|
27 | #Setup computational domain |
---|
28 | #--------- |
---|
29 | points, vertices, boundary = anuga.rectangular_cross(40,40) |
---|
30 | |
---|
31 | domain=Domain(points,vertices,boundary) # Create Domain |
---|
32 | domain.set_name('runup_v2') # Output to file runup.sww |
---|
33 | domain.set_datadir('.') # Use current folder |
---|
34 | domain.set_quantities_to_be_stored({'stage': 2, 'xmomentum': 2, 'ymomentum': 2, 'elevation': 1}) |
---|
35 | domain.set_store_vertices_uniquely(True) |
---|
36 | #------------------ |
---|
37 | # Define topography |
---|
38 | #------------------ |
---|
39 | |
---|
40 | def topography(x,y): |
---|
41 | return -x/2 #+0.05*numpy.sin((x+y)*50.0) #+0.1*(numpy.random.rand(len(x)) -0.5) # Linear bed slope + small random perturbation |
---|
42 | |
---|
43 | def stagefun(x,y): |
---|
44 | #stg=-0.2*(x<0.5) -0.1*(x>=0.5) |
---|
45 | stg=-0.2 # Stage |
---|
46 | #topo=topography(x,y) #Bed |
---|
47 | return stg #*(stg>topo) + topo*(stg<=topo) |
---|
48 | |
---|
49 | domain.set_quantity('elevation',topography) # Use function for elevation |
---|
50 | domain.get_quantity('elevation').smooth_vertex_values() # Steve's fix -- without this, substantial artificial velcities are generated everywhere in the domain. With this fix, there are artificial velocities near the coast, but not elsewhere. |
---|
51 | |
---|
52 | domain.set_quantity('friction',0.00) # Constant friction |
---|
53 | |
---|
54 | domain.set_quantity('stage', stagefun) # Constant negative initial stage |
---|
55 | |
---|
56 | #-------------------------- |
---|
57 | # Setup boundary conditions |
---|
58 | #-------------------------- |
---|
59 | Br=anuga.Reflective_boundary(domain) # Solid reflective wall |
---|
60 | Bt=anuga.Transmissive_boundary(domain) # Continue all values of boundary -- not used in this example |
---|
61 | Bd=anuga.Dirichlet_boundary([-0.2,0.,0.]) # Constant boundary values -- not used in this example |
---|
62 | Bw=anuga.Time_boundary(domain=domain, |
---|
63 | f=lambda t: [(0.0*sin(t*2*pi)-0.1)*exp(-t)-0.1,0.0,0.0]) # Time varying boundary -- get rid of the 0.0 to do a runup. |
---|
64 | |
---|
65 | #---------------------------------------------- |
---|
66 | # Associate boundary tags with boundary objects |
---|
67 | #---------------------------------------------- |
---|
68 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom':Br}) |
---|
69 | |
---|
70 | #------------------------------ |
---|
71 | #Evolve the system through time |
---|
72 | #------------------------------ |
---|
73 | |
---|
74 | #xwrite=open("xvel.out","wb") |
---|
75 | #ywrite=open("yvel.out","wb") |
---|
76 | ## Set print options to be compatible with file writing via the 'print' statement |
---|
77 | #numpy.set_printoptions(threshold=numpy.nan, linewidth=numpy.nan) |
---|
78 | |
---|
79 | for t in domain.evolve(yieldstep=0.2,finaltime=30.0): |
---|
80 | print domain.timestepping_statistics() |
---|
81 | |
---|
82 | # momx=domain.quantities['xmomentum'].centroid_values |
---|
83 | # momy=domain.quantities['ymomentum'].centroid_values |
---|
84 | # #mom2=domain.quantities['xmomentum'].vertex_values |
---|
85 | # dep1=(domain.quantities['stage'].centroid_values-domain.quantities['elevation'].centroid_values+1.0e-06) |
---|
86 | # #dep2=(domain.quantities['stage'].vertex_values-domain.quantities['elevation'].vertex_values+1.0e-06) |
---|
87 | # velx=momx/dep1 |
---|
88 | # vely=momy/dep1 |
---|
89 | # #vel2=mom2/dep2 |
---|
90 | # #print vel1.max(), vel2.max() |
---|
91 | # #print vel1.min(), vel2.min() |
---|
92 | # #xwrite.write(velx) |
---|
93 | # #print >> xwrite, str(velx) |
---|
94 | # #print >> ywrite, str(vely) |
---|
95 | # for i in velx: |
---|
96 | # data=struct.pack('f',i) |
---|
97 | # xwrite.write(data) |
---|
98 | # |
---|
99 | # for j in vely: |
---|
100 | # data2=struct.pack('f',j) |
---|
101 | # ywrite.write(data2) |
---|
102 | # |
---|
103 | # #print >> xwrite, \n |
---|
104 | # #numpy.savetxt("xvel.txt",velx) |
---|
105 | # #numpy.savetxt("yvel.txt",vely) |
---|
106 | # #velx.tofile(xwrite," ") |
---|
107 | # #vely.tofile(ywrite," ") |
---|
108 | # |
---|
109 | #xwrite.close() |
---|
110 | #ywrite.close() |
---|
111 | |
---|
112 | print 'Finished' |
---|