1 | """ Random utilities for reading sww file data and for plotting (in ipython, or |
---|
2 | in scripts) |
---|
3 | |
---|
4 | Functionality of note: |
---|
5 | |
---|
6 | util.get_outputs -- read the data from a single sww file into a single object |
---|
7 | |
---|
8 | util.combine_outputs -- read the data from a list of sww files into a single object |
---|
9 | |
---|
10 | util.near_transect -- for finding the indices of points 'near' to a given |
---|
11 | line, and assigning these points a coordinate along that line. |
---|
12 | This is useful for plotting outputs which are 'almost' along a |
---|
13 | transect (e.g. a channel cross-section) -- see example below |
---|
14 | |
---|
15 | util.sort_sww_filenames -- match sww filenames by a wildcard, and order |
---|
16 | them according to their 'time'. This means that |
---|
17 | they can be stuck together using 'combine_outputs' correctly |
---|
18 | |
---|
19 | util.triangle_areas -- compute the areas of every triangle in a get_outputs object [ must be vertex-based] |
---|
20 | |
---|
21 | #FIXME: util.water_volume -- compute the water volume at every time step in an sww file (needs both vertex and centroid value input). |
---|
22 | |
---|
23 | Here is an example ipython session which uses some of these functions: |
---|
24 | |
---|
25 | > import util |
---|
26 | > from matplotlib import pyplot as pyplot |
---|
27 | > p=util.get_output('myfile.sww',minimum_allowed_height=0.01) |
---|
28 | > p2=util.get_centroids(p,velocity_extrapolation=True) |
---|
29 | > xxx=util.near_transect(p,[95., 85.], [120.,68.],tol=2.) # Could equally well use p2 |
---|
30 | > pyplot.ion() # Interactive plotting |
---|
31 | > pyplot.scatter(xxx[1],p.vel[140,xxx[0]],color='red') # Plot along the transect |
---|
32 | |
---|
33 | FIXME: TODO -- Convert to a single function 'get_output', which can either take a |
---|
34 | single filename, a list of filenames, or a wildcard defining a number of |
---|
35 | filenames, and ensure that in each case, the output will be as desired. |
---|
36 | |
---|
37 | """ |
---|
38 | from anuga.file.netcdf import NetCDFFile |
---|
39 | import numpy |
---|
40 | |
---|
41 | class combine_outputs: |
---|
42 | """ |
---|
43 | Read in a list of filenames, and combine all their outputs into a single object. |
---|
44 | e.g.: |
---|
45 | |
---|
46 | p = util.combine_outputs(['file1.sww', 'file1_time_10000.sww', 'file1_time_20000.sww'], 0.01) |
---|
47 | |
---|
48 | will make an object p which has components p.x,p.y,p.time,p.stage, .... etc, |
---|
49 | where the values of stage / momentum / velocity from the sww files are concatenated as appropriate. |
---|
50 | |
---|
51 | This is nice for interactive interrogation of model outputs, or for sticking together outputs in scripts |
---|
52 | |
---|
53 | WARNING: It is easy to use lots of memory, if the sww files are large. |
---|
54 | |
---|
55 | Note: If you want the centroid values, then you could subsequently use: |
---|
56 | |
---|
57 | p2 = util.get_centroids(p,velocity_extrapolation=False) |
---|
58 | |
---|
59 | which would make an object p2 that is like p, but holds information at centroids |
---|
60 | """ |
---|
61 | def __init__(self, filename_list, minimum_allowed_height=1.0e-03): |
---|
62 | # |
---|
63 | # Go through the sww files in 'filename_list', and combine them into one object. |
---|
64 | # |
---|
65 | |
---|
66 | for i, filename in enumerate(filename_list): |
---|
67 | print i, filename |
---|
68 | # Store output from filename |
---|
69 | p_tmp = get_output(filename, minimum_allowed_height) |
---|
70 | if(i==0): |
---|
71 | # Create self |
---|
72 | p1=p_tmp |
---|
73 | else: |
---|
74 | # Append extra data to self |
---|
75 | # Note that p1.x, p1.y, p1.vols, p1.elev should not change |
---|
76 | assert (p1.x == p_tmp.x).all() |
---|
77 | assert (p1.y == p_tmp.y).all() |
---|
78 | assert (p1.vols ==p_tmp.vols).all() |
---|
79 | p1.time = numpy.append(p1.time, p_tmp.time) |
---|
80 | p1.stage = numpy.append(p1.stage, p_tmp.stage, axis=0) |
---|
81 | p1.height = numpy.append(p1.height, p_tmp.height, axis=0) |
---|
82 | p1.xmom = numpy.append(p1.xmom, p_tmp.xmom, axis=0) |
---|
83 | p1.ymom = numpy.append(p1.ymom, p_tmp.ymom, axis=0) |
---|
84 | p1.xvel = numpy.append(p1.xvel, p_tmp.xvel, axis=0) |
---|
85 | p1.yvel = numpy.append(p1.yvel, p_tmp.yvel, axis=0) |
---|
86 | p1.vel = numpy.append(p1.vel, p_tmp.vel, axis=0) |
---|
87 | |
---|
88 | self.x, self.y, self.time, self.vols, self.elev, self.stage, self.xmom, \ |
---|
89 | self.ymom, self.xvel, self.yvel, self.vel, self.minimum_allowed_height = \ |
---|
90 | p1.x, p1.y, p1.time, p1.vols, p1.elev, p1.stage, p1.xmom, p1.ymom, p1.xvel,\ |
---|
91 | p1.yvel, p1.vel, p1.minimum_allowed_height |
---|
92 | |
---|
93 | #################### |
---|
94 | |
---|
95 | def sort_sww_filenames(sww_wildcard): |
---|
96 | # Function to take a 'wildcard' sww filename, |
---|
97 | # and return a list of all filenames of this type, |
---|
98 | # sorted by their time. |
---|
99 | # This can then be used efficiently in 'combine_outputs' |
---|
100 | # if you have many filenames starting with the same pattern |
---|
101 | import glob |
---|
102 | filenames=glob.glob(sww_wildcard) |
---|
103 | |
---|
104 | # Extract time from filenames |
---|
105 | file_time=range(len(filenames)) # Predefine |
---|
106 | |
---|
107 | for i,filename in enumerate(filenames): |
---|
108 | filesplit=filename.rsplit('_time_') |
---|
109 | if(len(filesplit)>1): |
---|
110 | file_time[i]=int(filesplit[1].split('_0.sww')[0]) |
---|
111 | else: |
---|
112 | file_time[i]=0 |
---|
113 | |
---|
114 | name_and_time=zip(file_time,filenames) |
---|
115 | name_and_time.sort() # Sort by file_time |
---|
116 | |
---|
117 | output_times, output_names = zip(*name_and_time) |
---|
118 | |
---|
119 | return list(output_names) |
---|
120 | |
---|
121 | ############## |
---|
122 | |
---|
123 | class get_output: |
---|
124 | """Read in data from an .sww file in a convenient form |
---|
125 | e.g. |
---|
126 | p = util.get_output('channel3.sww', minimum_allowed_height=0.01) |
---|
127 | |
---|
128 | p then contains most relevant information as e.g., p.stage, p.elev, p.xmom, etc |
---|
129 | """ |
---|
130 | def __init__(self, filename, minimum_allowed_height=1.0e-03): |
---|
131 | self.x, self.y, self.time, self.vols, self.stage, \ |
---|
132 | self.height, self.elev, self.xmom, self.ymom, \ |
---|
133 | self.xvel, self.yvel, self.vel, self.minimum_allowed_height = \ |
---|
134 | read_output(filename, minimum_allowed_height) |
---|
135 | self.filename=filename |
---|
136 | |
---|
137 | |
---|
138 | def read_output(filename, minimum_allowed_height): |
---|
139 | # Input: The name of an .sww file to read data from, |
---|
140 | # e.g. read_sww('channel3.sww') |
---|
141 | # |
---|
142 | # Purpose: To read the sww file, and output a number of variables as arrays that |
---|
143 | # we can then manipulate (e.g. plot, interrogate) |
---|
144 | # |
---|
145 | # Output: x, y, time, stage, height, elev, xmom, ymom, xvel, yvel, vel |
---|
146 | # x,y are only stored at one time |
---|
147 | # elevation may be stored at one or multiple times |
---|
148 | # everything else is stored every time step for vertices |
---|
149 | |
---|
150 | # Import modules |
---|
151 | |
---|
152 | # Open ncdf connection |
---|
153 | fid=NetCDFFile(filename) |
---|
154 | |
---|
155 | |
---|
156 | # Read variables |
---|
157 | x=fid.variables['x'][:] |
---|
158 | |
---|
159 | y=fid.variables['y'][:] |
---|
160 | |
---|
161 | stage=fid.variables['stage'][:] |
---|
162 | |
---|
163 | elev=fid.variables['elevation'][:] |
---|
164 | |
---|
165 | if(fid.variables.has_key('height')): |
---|
166 | height=fid.variables['height'][:] |
---|
167 | else: |
---|
168 | # Back calculate height if it is not stored |
---|
169 | height=fid.variables['stage'][:] |
---|
170 | if(len(stage.shape)==len(elev.shape)): |
---|
171 | for i in range(stage.shape[0]): |
---|
172 | height[i,:]=stage[i,:]-elev[i,:] |
---|
173 | else: |
---|
174 | for i in range(stage.shape[0]): |
---|
175 | height[i,:]=stage[i,:]-elev |
---|
176 | |
---|
177 | |
---|
178 | xmom=fid.variables['xmomentum'][:] |
---|
179 | |
---|
180 | ymom=fid.variables['ymomentum'][:] |
---|
181 | |
---|
182 | time=fid.variables['time'][:] |
---|
183 | |
---|
184 | vols=fid.variables['volumes'][:] |
---|
185 | |
---|
186 | |
---|
187 | # Calculate velocity = momentum/depth |
---|
188 | xvel=xmom*0.0 |
---|
189 | yvel=ymom*0.0 |
---|
190 | |
---|
191 | for i in range(xmom.shape[0]): |
---|
192 | xvel[i,:]=xmom[i,:]/(height[i,:]+1.0e-06)*(height[i,:]>minimum_allowed_height) |
---|
193 | yvel[i,:]=ymom[i,:]/(height[i,:]+1.0e-06)*(height[i,:]>minimum_allowed_height) |
---|
194 | |
---|
195 | vel = (xvel**2+yvel**2)**0.5 |
---|
196 | |
---|
197 | return x, y, time, vols, stage, height, elev, xmom, ymom, xvel, yvel, vel, minimum_allowed_height |
---|
198 | |
---|
199 | ############## |
---|
200 | |
---|
201 | |
---|
202 | class get_centroids: |
---|
203 | """ |
---|
204 | Extract centroid values from the output of get_output. |
---|
205 | e.g. |
---|
206 | p = util.get_output('my_sww.sww', minimum_allowed_height=0.01) # vertex values |
---|
207 | pc=util.get_centroids(p, velocity_extrapolation=True) # centroid values |
---|
208 | |
---|
209 | NOTE: elevation is only stored once in the output, even if it was stored every timestep |
---|
210 | This is done because presently centroid elevations do not change over time. |
---|
211 | """ |
---|
212 | def __init__(self,p, velocity_extrapolation=False): |
---|
213 | |
---|
214 | self.time, self.x, self.y, self.stage, self.xmom,\ |
---|
215 | self.ymom, self.height, self.elev, self.xvel, \ |
---|
216 | self.yvel, self.vel= \ |
---|
217 | get_centroid_values(p, velocity_extrapolation) |
---|
218 | |
---|
219 | |
---|
220 | def get_centroid_values(p, velocity_extrapolation): |
---|
221 | # Input: p is the result of e.g. p=util.get_output('mysww.sww'). See the get_output class defined above |
---|
222 | # Output: Values of x, y, Stage, xmom, ymom, elev, xvel, yvel, vel at centroids |
---|
223 | #import numpy |
---|
224 | |
---|
225 | # Make 3 arrays, each containing one index of a vertex of every triangle. |
---|
226 | l=len(p.vols) |
---|
227 | #vols0=numpy.zeros(l, dtype='int') |
---|
228 | #vols1=numpy.zeros(l, dtype='int') |
---|
229 | #vols2=numpy.zeros(l, dtype='int') |
---|
230 | |
---|
231 | # FIXME: 22/2/12/ - I think this loop is slow, should be able to do this |
---|
232 | # another way |
---|
233 | # for i in range(l): |
---|
234 | # vols0[i]=p.vols[i][0] |
---|
235 | # vols1[i]=p.vols[i][1] |
---|
236 | # vols2[i]=p.vols[i][2] |
---|
237 | |
---|
238 | |
---|
239 | |
---|
240 | vols0=p.vols[:,0] |
---|
241 | vols1=p.vols[:,1] |
---|
242 | vols2=p.vols[:,2] |
---|
243 | |
---|
244 | #print vols0.shape |
---|
245 | #print p.vols.shape |
---|
246 | |
---|
247 | # Then use these to compute centroid averages |
---|
248 | x_cent=(p.x[vols0]+p.x[vols1]+p.x[vols2])/3.0 |
---|
249 | y_cent=(p.y[vols0]+p.y[vols1]+p.y[vols2])/3.0 |
---|
250 | |
---|
251 | fid=NetCDFFile(p.filename) |
---|
252 | if(fid.variables.has_key('stage_c')==False): |
---|
253 | |
---|
254 | stage_cent=(p.stage[:,vols0]+p.stage[:,vols1]+p.stage[:,vols2])/3.0 |
---|
255 | height_cent=(p.height[:,vols0]+p.height[:,vols1]+p.height[:,vols2])/3.0 |
---|
256 | #elev_cent=(p.elev[:,vols0]+p.elev[:,vols1]+p.elev[:,vols2])/3.0 |
---|
257 | # Only store elevation centroid once (since it doesn't change) |
---|
258 | if(len(p.elev.shape)==2): |
---|
259 | elev_cent=(p.elev[0,vols0]+p.elev[0,vols1]+p.elev[0,vols2])/3.0 |
---|
260 | else: |
---|
261 | elev_cent=(p.elev[vols0]+p.elev[vols1]+p.elev[vols2])/3.0 |
---|
262 | |
---|
263 | # Here, we need to treat differently the case of momentum extrapolation or |
---|
264 | # velocity extrapolation |
---|
265 | if velocity_extrapolation: |
---|
266 | xvel_cent=(p.xvel[:,vols0]+p.xvel[:,vols1]+p.xvel[:,vols2])/3.0 |
---|
267 | yvel_cent=(p.yvel[:,vols0]+p.yvel[:,vols1]+p.yvel[:,vols2])/3.0 |
---|
268 | |
---|
269 | # Now compute momenta |
---|
270 | xmom_cent=stage_cent*0.0 |
---|
271 | ymom_cent=stage_cent*0.0 |
---|
272 | |
---|
273 | t=len(p.time) |
---|
274 | |
---|
275 | for i in range(t): |
---|
276 | xmom_cent[i,:]=xvel_cent[i,:]*(height_cent[i,:]+1e-06)*\ |
---|
277 | (height_cent[i,:]>p.minimum_allowed_height) |
---|
278 | ymom_cent[i,:]=yvel_cent[i,:]*(height_cent[i,:]+1e-06)*\ |
---|
279 | (height_cent[i,:]>p.minimum_allowed_height) |
---|
280 | else: |
---|
281 | xmom_cent=(p.xmom[:,vols0]+p.xmom[:,vols1]+p.xmom[:,vols2])/3.0 |
---|
282 | ymom_cent=(p.ymom[:,vols0]+p.ymom[:,vols1]+p.ymom[:,vols2])/3.0 |
---|
283 | |
---|
284 | # Now compute velocities |
---|
285 | xvel_cent=stage_cent*0.0 |
---|
286 | yvel_cent=stage_cent*0.0 |
---|
287 | |
---|
288 | t=len(p.time) |
---|
289 | |
---|
290 | for i in range(t): |
---|
291 | xvel_cent[i,:]=xmom_cent[i,:]/(height_cent[i,:]+1.0e-06)*(height_cent[i,:]>p.minimum_allowed_height) |
---|
292 | yvel_cent[i,:]=ymom_cent[i,:]/(height_cent[i,:]+1.0e-06)*(height_cent[i,:]>p.minimum_allowed_height) |
---|
293 | |
---|
294 | else: |
---|
295 | # Get centroid values from file |
---|
296 | print 'Reading centroids from file' |
---|
297 | stage_cent=fid.variables['stage_c'][:] |
---|
298 | height_cent=fid.variables['height_c'][:] |
---|
299 | elev_cent=fid.variables['elevation_c'][:] |
---|
300 | if(len(elev_cent.shape)==2): |
---|
301 | elev_cent=elev_cent[0,:] # Only store elevation centroid once -- since it is constant |
---|
302 | xmom_cent=fid.variables['xmomentum_c'][:]*(height_cent>p.minimum_allowed_height) |
---|
303 | ymom_cent=fid.variables['ymomentum_c'][:]*(height_cent>p.minimum_allowed_height) |
---|
304 | xvel_cent=xmom_cent/(height_cent+1.0e-06) |
---|
305 | yvel_cent=ymom_cent/(height_cent+1.0e-06) |
---|
306 | |
---|
307 | |
---|
308 | # Compute velocity |
---|
309 | vel_cent=(xvel_cent**2 + yvel_cent**2)**0.5 |
---|
310 | |
---|
311 | return p.time, x_cent, y_cent, stage_cent, xmom_cent,\ |
---|
312 | ymom_cent, height_cent, elev_cent, xvel_cent, yvel_cent, vel_cent |
---|
313 | |
---|
314 | def animate_1D(time, var, x, ylab=' '): #, x=range(var.shape[1]), vmin=var.min(), vmax=var.max()): |
---|
315 | # Input: time = one-dimensional time vector; |
---|
316 | # var = array with first dimension = len(time) ; |
---|
317 | # x = (optional) vector width dimension equal to var.shape[1]; |
---|
318 | |
---|
319 | import pylab |
---|
320 | import numpy |
---|
321 | |
---|
322 | |
---|
323 | |
---|
324 | pylab.close() |
---|
325 | pylab.ion() |
---|
326 | |
---|
327 | # Initial plot |
---|
328 | vmin=var.min() |
---|
329 | vmax=var.max() |
---|
330 | line, = pylab.plot( (x.min(), x.max()), (vmin, vmax), 'o') |
---|
331 | |
---|
332 | # Lots of plots |
---|
333 | for i in range(len(time)): |
---|
334 | line.set_xdata(x) |
---|
335 | line.set_ydata(var[i,:]) |
---|
336 | pylab.draw() |
---|
337 | pylab.xlabel('x') |
---|
338 | pylab.ylabel(ylab) |
---|
339 | pylab.title('time = ' + str(time[i])) |
---|
340 | |
---|
341 | return |
---|
342 | |
---|
343 | def near_transect(p, point1, point2, tol=1.): |
---|
344 | # Function to get the indices of points in p less than 'tol' from the line |
---|
345 | # joining (x1,y1), and (x2,y2) |
---|
346 | # p comes from util.get_output('mysww.sww') |
---|
347 | # |
---|
348 | # e.g. |
---|
349 | # import util |
---|
350 | # from matplotlib import pyplot |
---|
351 | # p=util.get_output('merewether_1m.sww',0.01) |
---|
352 | # p2=util.get_centroids(p,velocity_extrapolation=True) |
---|
353 | # #xxx=transect_interpolate.near_transect(p,[95., 85.], [120.,68.],tol=2.) |
---|
354 | # xxx=util.near_transect(p,[95., 85.], [120.,68.],tol=2.) |
---|
355 | # pyplot.scatter(xxx[1],p.vel[140,xxx[0]],color='red') |
---|
356 | |
---|
357 | x1=point1[0] |
---|
358 | y1=point1[1] |
---|
359 | |
---|
360 | x2=point2[0] |
---|
361 | y2=point2[1] |
---|
362 | |
---|
363 | # Find line equation a*x + b*y + c = 0 |
---|
364 | # based on y=gradient*x +intercept |
---|
365 | if x1!=x2: |
---|
366 | gradient= (y2-y1)/(x2-x1) |
---|
367 | intercept = y1 - gradient*x1 |
---|
368 | |
---|
369 | a = -gradient |
---|
370 | b = 1. |
---|
371 | c = -intercept |
---|
372 | else: |
---|
373 | #print 'FIXME: Still need to treat 0 and infinite gradients' |
---|
374 | #assert 0==1 |
---|
375 | a=1. |
---|
376 | b=0. |
---|
377 | c=-x2 |
---|
378 | |
---|
379 | # Distance formula |
---|
380 | inv_denom = 1./(a**2 + b**2)**0.5 |
---|
381 | distp = abs(p.x*a + p.y*b + c)*inv_denom |
---|
382 | |
---|
383 | near_points = (distp<tol).nonzero()[0] |
---|
384 | |
---|
385 | # Now find a 'local' coordinate for the point, projected onto the line |
---|
386 | # g1 = unit vector parallel to the line |
---|
387 | # g2 = vector joining (x1,y1) and (p.x,p.y) |
---|
388 | g1x = x2-x1 |
---|
389 | g1y = y2-y1 |
---|
390 | g1_norm = (g1x**2 + g1y**2)**0.5 |
---|
391 | g1x=g1x/g1_norm |
---|
392 | g1y=g1x/g1_norm |
---|
393 | |
---|
394 | g2x = p.x[near_points] - x1 |
---|
395 | g2y = p.y[near_points] - y1 |
---|
396 | |
---|
397 | # Dot product = projected distance == a local coordinate |
---|
398 | local_coord = g1x*g2x + g1y*g2y |
---|
399 | |
---|
400 | return near_points, local_coord |
---|
401 | |
---|
402 | ######################## |
---|
403 | # TRIANGLE AREAS, WATER VOLUME |
---|
404 | def triangle_areas(p, subset=None): |
---|
405 | # Compute areas of triangles in p -- assumes p contains vertex information |
---|
406 | # subset = vector of centroid indices to include in the computation. |
---|
407 | |
---|
408 | if(subset is None): |
---|
409 | subset=range(len(p.vols[:,0])) |
---|
410 | |
---|
411 | x0=p.x[p.vols[subset,0]] |
---|
412 | x1=p.x[p.vols[subset,1]] |
---|
413 | x2=p.x[p.vols[subset,2]] |
---|
414 | |
---|
415 | y0=p.y[p.vols[subset,0]] |
---|
416 | y1=p.y[p.vols[subset,1]] |
---|
417 | y2=p.y[p.vols[subset,2]] |
---|
418 | |
---|
419 | # Vectors for cross-product |
---|
420 | v1_x=x0-x1 |
---|
421 | v1_y=y0-y1 |
---|
422 | # |
---|
423 | v2_x=x2-x1 |
---|
424 | v2_y=y2-y1 |
---|
425 | # Area |
---|
426 | area=(v1_x*v2_y-v1_y*v2_x)*0.5 |
---|
427 | area=abs(area) |
---|
428 | return area |
---|
429 | |
---|
430 | ### |
---|
431 | |
---|
432 | #def water_volume(p,p2, per_unit_area=False, subset=None): |
---|
433 | # # Compute the water volume from p(vertex values) and p2(centroid values) |
---|
434 | # |
---|
435 | # if(subset is None): |
---|
436 | # subset=range(len(p2.x)) |
---|
437 | # |
---|
438 | # l=len(p2.time) |
---|
439 | # area=triangle_areas(p, subset=subset) |
---|
440 | # |
---|
441 | # total_area=area.sum() |
---|
442 | # volume=p2.time*0. |
---|
443 | # |
---|
444 | # # This accounts for how volume is measured in ANUGA |
---|
445 | # # Compute in 2 steps to reduce precision error (important sometimes) |
---|
446 | # for i in range(l): |
---|
447 | # #volume[i]=((p2.stage[i,subset]-p2.elev[subset])*(p2.stage[i,subset]>p2.elev[subset])*area).sum() |
---|
448 | # volume[i]=((p2.stage[i,subset])*(p2.stage[i,subset]>p2.elev[subset])*area).sum() |
---|
449 | # volume[i]=volume[i]+((-p2.elev[subset])*(p2.stage[i,subset]>p2.elev[subset])*area).sum() |
---|
450 | # |
---|
451 | # if(per_unit_area): |
---|
452 | # volume=volume/total_area |
---|
453 | # |
---|
454 | # return volume |
---|
455 | |
---|
456 | |
---|
457 | def get_triangle_containing_point(p,point): |
---|
458 | |
---|
459 | V = p.vols |
---|
460 | |
---|
461 | x = p.x |
---|
462 | y = p.y |
---|
463 | |
---|
464 | l = len(x) |
---|
465 | |
---|
466 | from anuga.geometry.polygon import is_outside_polygon,is_inside_polygon |
---|
467 | |
---|
468 | # FIXME: Horrible brute force |
---|
469 | for i in xrange(l): |
---|
470 | i0 = V[i,0] |
---|
471 | i1 = V[i,1] |
---|
472 | i2 = V[i,2] |
---|
473 | poly = [ [x[i0], y[i0]], [x[i1], y[i1]], [x[i2], y[i2]] ] |
---|
474 | |
---|
475 | if is_inside_polygon(point, poly, closed=True): |
---|
476 | return i |
---|
477 | |
---|
478 | msg = 'Point %s not found within a triangle' %str(point) |
---|
479 | raise Exception(msg) |
---|
480 | |
---|
481 | |
---|
482 | def get_extent(p): |
---|
483 | |
---|
484 | import numpy |
---|
485 | |
---|
486 | x_min = numpy.min(p.x) |
---|
487 | x_max = numpy.max(p.x) |
---|
488 | |
---|
489 | y_min = numpy.min(p.y) |
---|
490 | y_max = numpy.max(p.y) |
---|
491 | |
---|
492 | return x_min, x_max, y_min, y_max |
---|
493 | |
---|
494 | |
---|
495 | |
---|
496 | ## FOLLOWING FUNCTION MODIFIED FROM STACK OVERFLOW |
---|
497 | def make_grid(data, lats, lons, fileName, EPSG_CODE=None): |
---|
498 | """ |
---|
499 | Convert data,lats,lons to a georeferenced raster tif |
---|
500 | INPUT: data -- array with desired raster cell values |
---|
501 | lats -- 1d array with 'latitude' or 'y' range |
---|
502 | lons -- 1D array with 'longitude' or 'x' range |
---|
503 | fileName -- name of file to write to |
---|
504 | EPSG_CODE -- Integer code with projection information in EPSG format |
---|
505 | """ |
---|
506 | try: |
---|
507 | import gdal |
---|
508 | import osr |
---|
509 | except: |
---|
510 | raise Exception, 'Cannot find gdal and/or osr python modules' |
---|
511 | |
---|
512 | #data = scipy.random.rand(5,6) |
---|
513 | #lats = scipy.array([-5.5, -5.0, -4.5, -4.0, -3.5]) |
---|
514 | #lons = scipy.array([135.0, 135.5, 136.0, 136.5, 137.0, 137.5]) |
---|
515 | #import pdb |
---|
516 | #pdb.set_trace() |
---|
517 | xres = lons[1] - lons[0] |
---|
518 | yres = lats[1] - lats[0] |
---|
519 | |
---|
520 | ysize = len(lats) |
---|
521 | xsize = len(lons) |
---|
522 | |
---|
523 | # Assume data/lats/longs refer to cell centres, as per gdal |
---|
524 | #ulx = lons[0] - (xres / 2.) |
---|
525 | #uly = lats[-1] - (yres / 2.) |
---|
526 | llx = lons[0] - (xres / 2.) |
---|
527 | lly = lats[0] - (yres / 2.) |
---|
528 | |
---|
529 | driver = gdal.GetDriverByName('GTiff') |
---|
530 | ds = driver.Create(fileName, xsize, ysize, 1, gdal.GDT_Float32) |
---|
531 | |
---|
532 | # this assumes the projection is Geographic lat/lon WGS 84 |
---|
533 | srs = osr.SpatialReference() |
---|
534 | srs.ImportFromEPSG(EPSG_CODE) |
---|
535 | ds.SetProjection(srs.ExportToWkt()) |
---|
536 | |
---|
537 | #gt = [ulx, xres, 0, uly, 0, yres ] |
---|
538 | gt = [llx, xres, 0, lly, 0, yres ] |
---|
539 | ds.SetGeoTransform(gt) |
---|
540 | |
---|
541 | outband = ds.GetRasterBand(1) |
---|
542 | outband.WriteArray(data) |
---|
543 | |
---|
544 | ds = None |
---|
545 | return |
---|
546 | |
---|
547 | ################################################################################## |
---|
548 | |
---|
549 | def Make_Geotif(swwFile, output_quantity='depth', |
---|
550 | myTimeStep=1, CellSize=5.0, |
---|
551 | lower_left=None, upper_right=None, |
---|
552 | EPSG_CODE=None, |
---|
553 | velocity_extrapolation=True, |
---|
554 | min_allowed_height=1.0e-05, |
---|
555 | output_dir='TIFS', |
---|
556 | verbose=False): |
---|
557 | """ |
---|
558 | Make a georeferenced tif by nearest-neighbour interpolation of sww file outputs. |
---|
559 | INPUTS: swwFile -- name of sww file |
---|
560 | output_quantity -- quantity to plot ('depth' or 'velocity' or 'stage' or 'elevation') |
---|
561 | myTimeStep -- time-index of swwFile to plot, or 'last', or 'max' |
---|
562 | CellSize -- approximate pixel size for output raster [adapted to fit lower_left / upper_right] |
---|
563 | lower_left -- [x0,y0] of lower left corner. If None, use extent of swwFile. |
---|
564 | upper_right -- [x1,y1] of upper right corner. If None, use extent of swwFile. |
---|
565 | EPSG_CODE -- Projection information as an integer EPSG code (e.g. 3123 for PRS92 Zone 3). |
---|
566 | Google for info on EPSG Codes |
---|
567 | velocity_extrapolation -- Compute velocity assuming the code extrapolates with velocity (instead of momentum)? |
---|
568 | min_allowed_height -- Minimum allowed height from ANUGA |
---|
569 | output_dir -- Write outputs to this directory |
---|
570 | |
---|
571 | """ |
---|
572 | try: |
---|
573 | import gdal |
---|
574 | import osr |
---|
575 | import scipy.io |
---|
576 | import scipy.interpolate |
---|
577 | import anuga |
---|
578 | import os |
---|
579 | except: |
---|
580 | raise Exception, 'Required modules not installed for mkgeotif' |
---|
581 | |
---|
582 | |
---|
583 | if(EPSG_CODE is None): |
---|
584 | raise Exception, 'Must specify an integer EPSG_CODE describing the file projection' |
---|
585 | ### |
---|
586 | ## INPUTS |
---|
587 | ### |
---|
588 | #swwFile='taguig_rainfall_ondoy.sww' |
---|
589 | #myTimeStep=40 # Index of time-slice in sWW to plot |
---|
590 | ## Plot extents |
---|
591 | #lower_left=None #[x0,y0] |
---|
592 | #upper_right=None #[x1,y1] |
---|
593 | ## Projection as an epsg code |
---|
594 | #EPSG_CODE=3123 |
---|
595 | ## CellSize for output raster |
---|
596 | #CellSize=5.0 # APPROXIMATE CellSize |
---|
597 | ## ANUGA Parameters |
---|
598 | #min_allowed_height=1.0e-05 |
---|
599 | #velocity_extrapolation=True |
---|
600 | |
---|
601 | #output_quantity='depth' # 'velocity' 'depth' 'stage' |
---|
602 | #output_dir='TEST' |
---|
603 | |
---|
604 | ## |
---|
605 | # END INPUTS |
---|
606 | ## |
---|
607 | |
---|
608 | # Make output_dir |
---|
609 | try: |
---|
610 | os.mkdir(output_dir) |
---|
611 | except: |
---|
612 | pass |
---|
613 | |
---|
614 | # Read in ANUGA outputs |
---|
615 | # FIXME: It would be good to support reading of data subsets |
---|
616 | if(verbose): |
---|
617 | print 'Reading sww File ...' |
---|
618 | p=util.get_output(swwFile,min_allowed_height) |
---|
619 | p2=util.get_centroids(p,velocity_extrapolation) |
---|
620 | swwIn=scipy.io.netcdf_file(swwFile) |
---|
621 | xllcorner=swwIn.xllcorner |
---|
622 | yllcorner=swwIn.yllcorner |
---|
623 | |
---|
624 | if(myTimeStep=='last'): |
---|
625 | myTimeStep=len(p.time)-1 |
---|
626 | |
---|
627 | |
---|
628 | if(verbose): |
---|
629 | print 'Extracting required data ...' |
---|
630 | # Get ANUGA points |
---|
631 | swwX=p2.x+xllcorner |
---|
632 | swwY=p2.y+yllcorner |
---|
633 | |
---|
634 | if(myTimeStep!='max'): |
---|
635 | swwStage=p2.stage[myTimeStep,:] |
---|
636 | swwHeight=p2.height[myTimeStep,:] |
---|
637 | swwVel=p2.vel[myTimeStep,:] |
---|
638 | timestepString=str(round(p2.time[myTimeStep])) |
---|
639 | else: |
---|
640 | swwStage=p2.stage.max(axis=0) |
---|
641 | swwHeight=p2.height.max(axis=0) |
---|
642 | swwVel=p2.vel.max(axis=0) |
---|
643 | timestepString='max' |
---|
644 | |
---|
645 | #import pdb |
---|
646 | #pdb.set_trace() |
---|
647 | |
---|
648 | # Make name for output file |
---|
649 | output_name=output_dir+'/'+os.path.splitext(os.path.basename(swwFile))[0] + '_'+\ |
---|
650 | output_quantity+'_'+timestepString+\ |
---|
651 | '_'+str(myTimeStep)+'.tif' |
---|
652 | |
---|
653 | if(verbose): |
---|
654 | print 'Computing grid of output locations...' |
---|
655 | # Get points where we want raster cells |
---|
656 | if(lower_left is None): |
---|
657 | lower_left=[swwX.min(),swwY.min()] |
---|
658 | if(upper_right is None): |
---|
659 | upper_right=[swwX.max(),swwY.max()] |
---|
660 | |
---|
661 | nx=round((upper_right[0]-lower_left[0])*1.0/(1.0*CellSize)) + 1 |
---|
662 | xres=(upper_right[0]-lower_left[0])*1.0/(1.0*(nx-1)) |
---|
663 | desiredX=scipy.arange(lower_left[0], upper_right[0],xres ) |
---|
664 | ny=round((upper_right[1]-lower_left[1])*1.0/(1.0*CellSize)) + 1 |
---|
665 | yres=(upper_right[1]-lower_left[1])*1.0/(1.0*(ny-1)) |
---|
666 | desiredY=scipy.arange(lower_left[1], upper_right[1], yres) |
---|
667 | |
---|
668 | gridX, gridY=scipy.meshgrid(desiredX,desiredY) |
---|
669 | |
---|
670 | # Make functions to interpolate quantities at points |
---|
671 | if(verbose): |
---|
672 | print 'Making interpolation functions...' |
---|
673 | swwXY=scipy.array([swwX[:],swwY[:]]).transpose() |
---|
674 | #swwXY=scipy.array([scipy.concatenate(gridX), scipy.concatenate(gridY)]).transpose() |
---|
675 | if(output_quantity=='stage'): |
---|
676 | qFun=scipy.interpolate.NearestNDInterpolator(swwXY,swwStage.transpose()) |
---|
677 | elif(output_quantity=='velocity'): |
---|
678 | qFun=scipy.interpolate.NearestNDInterpolator(swwXY,swwVel.transpose()) |
---|
679 | elif(output_quantity=='elevation'): |
---|
680 | qFun=scipy.interpolate.NearestNDInterpolator(swwXY,p2.elev.transpose()) |
---|
681 | elif(output_quantity=='depth'): |
---|
682 | qFun=scipy.interpolate.NearestNDInterpolator(swwXY,swwHeight.transpose()) |
---|
683 | else: |
---|
684 | raise Exception, 'output_quantity not available -- check if it is spelled correctly' |
---|
685 | |
---|
686 | if(verbose): |
---|
687 | print 'Interpolating' |
---|
688 | gridq=qFun(scipy.array([scipy.concatenate(gridX),scipy.concatenate(gridY)]).transpose()).transpose() |
---|
689 | gridq.shape=(len(desiredY),len(desiredX)) |
---|
690 | #gridq=gridq.transpose() |
---|
691 | |
---|
692 | if(verbose): |
---|
693 | print 'Making raster ...' |
---|
694 | make_grid(gridq,desiredY,desiredX, output_name,EPSG_CODE) |
---|