1 | // Python - C extension module for shallow_water.py |
---|
2 | // |
---|
3 | // To compile (Python2.6): |
---|
4 | // gcc -c swb2_domain_ext.c -I/usr/include/python2.6 -o domain_ext.o -Wall -O |
---|
5 | // gcc -shared swb2_domain_ext.o -o swb2_domain_ext.so |
---|
6 | // |
---|
7 | // or use python compile.py |
---|
8 | // |
---|
9 | // See the module swb_domain.py for more documentation on |
---|
10 | // how to use this module |
---|
11 | // |
---|
12 | // |
---|
13 | // Stephen Roberts, ANU 2009 |
---|
14 | // Ole Nielsen, GA 2004 |
---|
15 | // Gareth Davies, GA 2011 |
---|
16 | |
---|
17 | #include "Python.h" |
---|
18 | #include "numpy/arrayobject.h" |
---|
19 | #include "math.h" |
---|
20 | #include <stdio.h> |
---|
21 | //#include "numpy_shim.h" |
---|
22 | |
---|
23 | // Shared code snippets |
---|
24 | #include "util_ext.h" |
---|
25 | |
---|
26 | |
---|
27 | const double pi = 3.14159265358979; |
---|
28 | |
---|
29 | // Computational function for rotation |
---|
30 | int _rotate(double *q, double n1, double n2) { |
---|
31 | /*Rotate the last 2 coordinates of q (q[1], q[2]) |
---|
32 | from x,y coordinates to coordinates based on normal vector (n1, n2). |
---|
33 | |
---|
34 | Result is returned in array 2x1 r |
---|
35 | To rotate in opposite direction, call rotate with (q, n1, -n2) |
---|
36 | |
---|
37 | Contents of q are changed by this function */ |
---|
38 | |
---|
39 | |
---|
40 | double q1, q2; |
---|
41 | |
---|
42 | // Shorthands |
---|
43 | q1 = q[1]; // x coordinate |
---|
44 | q2 = q[2]; // y coordinate |
---|
45 | |
---|
46 | // Rotate |
---|
47 | q[1] = n1*q1 + n2*q2; |
---|
48 | q[2] = -n2*q1 + n1*q2; |
---|
49 | |
---|
50 | return 0; |
---|
51 | } |
---|
52 | |
---|
53 | // Function to obtain speed from momentum and depth. |
---|
54 | // This is used by flux functions |
---|
55 | // Input parameters uh and h may be modified by this function. |
---|
56 | // Tried to inline, but no speedup was achieved 27th May 2009 (Ole) |
---|
57 | //static inline double _compute_speed(double *uh, |
---|
58 | double _compute_speed(double *uh, |
---|
59 | double *h, |
---|
60 | double epsilon, |
---|
61 | double h0, |
---|
62 | double limiting_threshold) { |
---|
63 | |
---|
64 | double u; |
---|
65 | |
---|
66 | if (*h < limiting_threshold) { |
---|
67 | // Apply limiting of speeds according to the ANUGA manual |
---|
68 | if (*h < epsilon) { |
---|
69 | *h = max(0.0,*h); // Could have been negative |
---|
70 | //*h = 0.0; // Could have been negative |
---|
71 | u = 0.0; |
---|
72 | } else { |
---|
73 | u = *uh/(*h + h0/ *h); |
---|
74 | } |
---|
75 | |
---|
76 | |
---|
77 | // Adjust momentum to be consistent with speed |
---|
78 | *uh = u * *h; |
---|
79 | } else { |
---|
80 | // We are in deep water - no need for limiting |
---|
81 | u = *uh/ *h; |
---|
82 | } |
---|
83 | |
---|
84 | return u; |
---|
85 | } |
---|
86 | |
---|
87 | // minmod limiter |
---|
88 | int _minmod(double a, double b){ |
---|
89 | // Compute minmod |
---|
90 | |
---|
91 | if(sign(a)!=sign(b)){ |
---|
92 | return 0.0; |
---|
93 | }else{ |
---|
94 | return min(fabs(a), fabs(b))*sign(a); |
---|
95 | } |
---|
96 | |
---|
97 | |
---|
98 | } |
---|
99 | |
---|
100 | // Innermost flux function (using stage w=z+h) |
---|
101 | int _flux_function_central(double *q_left, double *q_right, |
---|
102 | double z_left, double z_right, |
---|
103 | double n1, double n2, |
---|
104 | double epsilon, |
---|
105 | double h0, |
---|
106 | double limiting_threshold, |
---|
107 | double g, |
---|
108 | double *edgeflux, double *max_speed, |
---|
109 | double *pressure_flux, double hc, |
---|
110 | double hc_n, double speed_max_last, |
---|
111 | double smooth) |
---|
112 | { |
---|
113 | |
---|
114 | /*Compute fluxes between volumes for the shallow water wave equation |
---|
115 | cast in terms of the 'stage', w = h+z using |
---|
116 | the 'central scheme' as described in |
---|
117 | |
---|
118 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
119 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
120 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
121 | |
---|
122 | The implemented formula is given in equation (3.15) on page 714 |
---|
123 | */ |
---|
124 | |
---|
125 | int i; |
---|
126 | |
---|
127 | double w_left, h_left, uh_left, vh_left, u_left; |
---|
128 | double w_right, h_right, uh_right, vh_right, u_right; |
---|
129 | double s_min, s_max, soundspeed_left, soundspeed_right; |
---|
130 | double denom, inverse_denominator, z; |
---|
131 | double uint, t1, t2, t3, min_speed, tmp; |
---|
132 | // Workspace (allocate once, use many) |
---|
133 | static double q_left_rotated[3], q_right_rotated[3], flux_right[3], flux_left[3]; |
---|
134 | |
---|
135 | // Copy conserved quantities to protect from modification |
---|
136 | q_left_rotated[0] = q_left[0]; |
---|
137 | q_right_rotated[0] = q_right[0]; |
---|
138 | q_left_rotated[1] = q_left[1]; |
---|
139 | q_right_rotated[1] = q_right[1]; |
---|
140 | q_left_rotated[2] = q_left[2]; |
---|
141 | q_right_rotated[2] = q_right[2]; |
---|
142 | |
---|
143 | // Align x- and y-momentum with x-axis |
---|
144 | _rotate(q_left_rotated, n1, n2); |
---|
145 | _rotate(q_right_rotated, n1, n2); |
---|
146 | |
---|
147 | z = 0.5*(z_left + z_right); // Average elevation values. |
---|
148 | // Even though this will nominally allow |
---|
149 | // for discontinuities in the elevation data, |
---|
150 | // there is currently no numerical support for |
---|
151 | // this so results may be strange near |
---|
152 | // jumps in the bed. |
---|
153 | |
---|
154 | // Compute speeds in x-direction |
---|
155 | w_left = q_left_rotated[0]; |
---|
156 | h_left = max(w_left - z,0.); |
---|
157 | uh_left = q_left_rotated[1]; |
---|
158 | if(h_left>h0){ |
---|
159 | u_left = uh_left/max(h_left, 1.0e-06); |
---|
160 | uh_left=h_left*u_left; |
---|
161 | }else{ |
---|
162 | u_left=0.; |
---|
163 | uh_left=h_left*u_left; |
---|
164 | } |
---|
165 | //u_left = _compute_speed(&uh_left, &h_left, |
---|
166 | // epsilon, h0, limiting_threshold); |
---|
167 | |
---|
168 | w_right = q_right_rotated[0]; |
---|
169 | h_right = max(w_right - z, 0.); |
---|
170 | uh_right = q_right_rotated[1]; |
---|
171 | //u_right = _compute_speed(&uh_right, &h_right, |
---|
172 | // epsilon, h0, limiting_threshold); |
---|
173 | if(h_right>h0){ |
---|
174 | u_right = uh_right/max(h_right, 1.0e-06); |
---|
175 | uh_right=h_right*u_right; |
---|
176 | }else{ |
---|
177 | u_right=0.; |
---|
178 | uh_right=h_right*u_right; |
---|
179 | } |
---|
180 | |
---|
181 | // Momentum in y-direction |
---|
182 | vh_left = q_left_rotated[2]; |
---|
183 | vh_right = q_right_rotated[2]; |
---|
184 | |
---|
185 | // Limit y-momentum if necessary |
---|
186 | // Leaving this out, improves speed significantly (Ole 27/5/2009) |
---|
187 | // All validation tests pass, so do we really need it anymore? |
---|
188 | //_compute_speed(&vh_left, &h_left, |
---|
189 | // epsilon, h0, limiting_threshold); |
---|
190 | //_compute_speed(&vh_right, &h_right, |
---|
191 | // epsilon, h0, limiting_threshold); |
---|
192 | |
---|
193 | // Maximal and minimal wave speeds |
---|
194 | soundspeed_left = sqrt(g*h_left); |
---|
195 | soundspeed_right = sqrt(g*h_right); |
---|
196 | |
---|
197 | // Code to use fast square root optimisation if desired. |
---|
198 | // Timings on AMD 64 for the Okushiri profile gave the following timings |
---|
199 | // |
---|
200 | // SQRT Total Flux |
---|
201 | //============================= |
---|
202 | // |
---|
203 | // Ref 405s 152s |
---|
204 | // Fast (dbl) 453s 173s |
---|
205 | // Fast (sng) 437s 171s |
---|
206 | // |
---|
207 | // Consequently, there is currently (14/5/2009) no reason to use this |
---|
208 | // approximation. |
---|
209 | |
---|
210 | //soundspeed_left = fast_squareroot_approximation(g*h_left); |
---|
211 | //soundspeed_right = fast_squareroot_approximation(g*h_right); |
---|
212 | |
---|
213 | s_max = max(u_left + soundspeed_left, u_right + soundspeed_right); |
---|
214 | if (s_max < 0.0) |
---|
215 | { |
---|
216 | s_max = 0.0; |
---|
217 | } |
---|
218 | |
---|
219 | if( hc < h0){ |
---|
220 | s_max = 0.0; |
---|
221 | } |
---|
222 | |
---|
223 | |
---|
224 | s_min = min(u_left - soundspeed_left, u_right - soundspeed_right); |
---|
225 | if (s_min > 0.0) |
---|
226 | { |
---|
227 | s_min = 0.0; |
---|
228 | } |
---|
229 | |
---|
230 | if( hc_n < h0){ |
---|
231 | s_min = 0.0; |
---|
232 | } |
---|
233 | |
---|
234 | // Flux formulas |
---|
235 | flux_left[0] = u_left*h_left; |
---|
236 | //if(hc>h0 & hc_n > h0){ |
---|
237 | //if(w_left>z+h0 & w_right>z+h0){ |
---|
238 | flux_left[1] = u_left*uh_left; //+ 0.5*g*h_left*h_left; |
---|
239 | flux_left[2] = u_left*vh_left; |
---|
240 | //}else{ |
---|
241 | // flux_left[1] = 0.;//u_left*uh_left; //+ 0.5*g*h_left*h_left; |
---|
242 | // flux_left[2] = 0.;//u_left*vh_left; |
---|
243 | //} |
---|
244 | |
---|
245 | flux_right[0] = u_right*h_right; |
---|
246 | //if(w_left>z+h0 & w_right>z+h0){ |
---|
247 | flux_right[1] = u_right*uh_right ; //+ 0.5*g*h_right*h_right; |
---|
248 | flux_right[2] = u_right*vh_right; |
---|
249 | //}else{ |
---|
250 | // flux_right[1] = 0.; //u_right*uh_right ; //+ 0.5*g*h_right*h_right; |
---|
251 | // flux_right[2] = 0.; //u_right*vh_right; |
---|
252 | //} |
---|
253 | |
---|
254 | // Flux computation |
---|
255 | denom = s_max - s_min; |
---|
256 | //if (denom < epsilon) |
---|
257 | if (0==1) |
---|
258 | { |
---|
259 | // Both wave speeds are very small |
---|
260 | memset(edgeflux, 0, 3*sizeof(double)); |
---|
261 | |
---|
262 | *max_speed = 0.0; |
---|
263 | //*pressure_flux = 0.0; |
---|
264 | *pressure_flux = 0.5*g*0.5*(h_left*h_left+h_right*h_right); |
---|
265 | } |
---|
266 | else |
---|
267 | { |
---|
268 | // Maximal wavespeed |
---|
269 | *max_speed = max(s_max, -s_min); |
---|
270 | //min_speed=min(s_max, -s_min); |
---|
271 | |
---|
272 | inverse_denominator = 1.0/max(denom,1.0e-100); |
---|
273 | for (i = 0; i < 3; i++) |
---|
274 | { |
---|
275 | edgeflux[i] = s_max*flux_left[i] - s_min*flux_right[i]; |
---|
276 | |
---|
277 | // Standard smoothing term |
---|
278 | edgeflux[i] += (s_max*s_min)*(q_right_rotated[i] - q_left_rotated[i]); |
---|
279 | |
---|
280 | // Standard smoothing term, scaled |
---|
281 | //edgeflux[i] += (s_max*s_min)*(q_right_rotated[i] - q_left_rotated[i])*smooth; |
---|
282 | |
---|
283 | // Adjustment to the scheme by Kurganov and Lin 2007 Communications in Computational |
---|
284 | // Physics 2:141-163 |
---|
285 | //uint = (s_max*q_right_rotated[i] - s_min*q_left_rotated[i] - (flux_right[i] - flux_left[i]))*inverse_denominator; |
---|
286 | //t1 = (q_right_rotated[i] - uint); |
---|
287 | //t2 = (-q_left_rotated[i] + uint); |
---|
288 | //t3 = _minmod(t1,t2); |
---|
289 | //edgeflux[i] += (s_max*s_min)*(q_right_rotated[i] - q_left_rotated[i]-t3); |
---|
290 | |
---|
291 | // test this |
---|
292 | //edgeflux[i] += (s_max*s_min)*(q_right_rotated[i] - q_left_rotated[i])*pow(min(hc/(hc_n+epsilon), hc_n/(hc+epsilon)),1.0); |
---|
293 | |
---|
294 | // test this |
---|
295 | //tmp=min(fabs(q_right_rotated[i])/(fabs(q_left_rotated[i])+epsilon) , fabs(q_left_rotated[i])/(fabs(q_right_rotated[i])+epsilon)); |
---|
296 | //edgeflux[i] += (s_max*s_min)*(q_right_rotated[i] - q_left_rotated[i]-t3)*pow(tmp,1.0); |
---|
297 | |
---|
298 | //GD HACK: Here, we supress the 'smoothing' part of the flux -- like scaling diffusion by local wave speed |
---|
299 | // This is a bad idea! E.g. oscillations in landslide wave runup case |
---|
300 | // However, it does supress the growth of some wet-dry instabilities (e.g. PNG). |
---|
301 | //if(i!=2){ |
---|
302 | //edgeflux[i] += (s_max*s_min)*(q_right_rotated[i] - q_left_rotated[i])* |
---|
303 | // (min(*max_speed/(max(speed_max_last,1.0e-100)),1.0));//(min(hc/h_left,min(hc_n/h_right,1.0))); |
---|
304 | //} |
---|
305 | |
---|
306 | edgeflux[i] *= inverse_denominator; |
---|
307 | } |
---|
308 | // Separate pressure flux, so we can apply different wet-dry hacks to it |
---|
309 | *pressure_flux = 0.5*g*( s_max*h_left*h_left -s_min*h_right*h_right)*inverse_denominator; |
---|
310 | |
---|
311 | |
---|
312 | // Rotate back |
---|
313 | _rotate(edgeflux, n1, -n2); |
---|
314 | } |
---|
315 | |
---|
316 | return 0; |
---|
317 | } |
---|
318 | |
---|
319 | |
---|
320 | // Computational function for flux computation |
---|
321 | double _compute_fluxes_central(int number_of_elements, |
---|
322 | double timestep, |
---|
323 | double epsilon, |
---|
324 | double H0, |
---|
325 | double g, |
---|
326 | double* boundary_flux_sum, |
---|
327 | long* neighbours, |
---|
328 | long* neighbour_edges, |
---|
329 | double* normals, |
---|
330 | double* edgelengths, |
---|
331 | double* radii, |
---|
332 | double* areas, |
---|
333 | long* tri_full_flag, |
---|
334 | double* stage_edge_values, |
---|
335 | double* xmom_edge_values, |
---|
336 | double* ymom_edge_values, |
---|
337 | double* bed_edge_values, |
---|
338 | double* stage_boundary_values, |
---|
339 | double* xmom_boundary_values, |
---|
340 | double* ymom_boundary_values, |
---|
341 | long* boundary_flux_type, |
---|
342 | double* stage_explicit_update, |
---|
343 | double* xmom_explicit_update, |
---|
344 | double* ymom_explicit_update, |
---|
345 | long* already_computed_flux, |
---|
346 | double* max_speed_array, |
---|
347 | int optimise_dry_cells, |
---|
348 | int timestep_order, |
---|
349 | double* stage_centroid_values, |
---|
350 | double* xmom_centroid_values, |
---|
351 | double* ymom_centroid_values, |
---|
352 | double* bed_centroid_values, |
---|
353 | double* bed_vertex_values) { |
---|
354 | // Local variables |
---|
355 | double max_speed, length, inv_area, zl, zr; |
---|
356 | double h0 = H0*2.0;//H0*H0;//H0*H0; // This ensures a good balance when h approaches H0. |
---|
357 | |
---|
358 | double limiting_threshold = 10 * H0 ;//H0; //10 * H0; // Avoid applying limiter below this |
---|
359 | // threshold for performance reasons. |
---|
360 | // See ANUGA manual under flux limiting |
---|
361 | int k, i, m, n,j, ii; |
---|
362 | int ki, nm = 0, ki2,ki3, nm3; // Index shorthands |
---|
363 | |
---|
364 | // Workspace (making them static actually made function slightly slower (Ole)) |
---|
365 | double ql[3], qr[3], edgeflux[3]; // Work array for summing up fluxes |
---|
366 | double stage_edges[3];//Work array |
---|
367 | double bedslope_work, local_timestep; |
---|
368 | int neighbours_wet[3];//Work array |
---|
369 | int useint; |
---|
370 | double stage_edge_lim, outgoing_mass_edges, bedtop, bedbot, pressure_flux, hc, hc_n, tmp, tmp2; |
---|
371 | static long call = 1; // Static local variable flagging already computed flux |
---|
372 | double speed_max_last, vol, smooth; |
---|
373 | |
---|
374 | double *count_wet_edges, *count_wet_neighbours, *edgeflux_store, *pressuregrad_store; |
---|
375 | |
---|
376 | count_wet_neighbours = malloc(number_of_elements*sizeof(double)); |
---|
377 | count_wet_edges = malloc(number_of_elements*sizeof(double)); |
---|
378 | edgeflux_store = malloc(number_of_elements*9*sizeof(double)); |
---|
379 | pressuregrad_store = malloc(number_of_elements*3*sizeof(double)); |
---|
380 | |
---|
381 | call++; // Flag 'id' of flux calculation for this timestep |
---|
382 | |
---|
383 | // Set explicit_update to zero for all conserved_quantities. |
---|
384 | // This assumes compute_fluxes called before forcing terms |
---|
385 | memset((char*) stage_explicit_update, 0, number_of_elements * sizeof (double)); |
---|
386 | memset((char*) xmom_explicit_update, 0, number_of_elements * sizeof (double)); |
---|
387 | memset((char*) ymom_explicit_update, 0, number_of_elements * sizeof (double)); |
---|
388 | |
---|
389 | local_timestep=timestep; |
---|
390 | |
---|
391 | //printf("timestep_order %lf \n", timestep_order*1.0); |
---|
392 | // Compute minimum bed edge value on each triangle |
---|
393 | speed_max_last=0.0; |
---|
394 | for (k = 0; k < number_of_elements; k++){ |
---|
395 | |
---|
396 | count_wet_edges[k] = 0.; |
---|
397 | count_wet_neighbours[k] = 0.; |
---|
398 | for (i =0; i<3; i++){ |
---|
399 | ki=3*k+i; |
---|
400 | if(stage_edge_values[ki] > bed_edge_values[ki]+epsilon) count_wet_edges[k]+=1.0; |
---|
401 | |
---|
402 | n=neighbours[ki]; |
---|
403 | if(n<0 || stage_centroid_values[n] > bed_centroid_values[n]+h0+epsilon) count_wet_neighbours[k]+=1.0; |
---|
404 | } |
---|
405 | |
---|
406 | speed_max_last=max(speed_max_last, max_speed_array[k]); |
---|
407 | } |
---|
408 | |
---|
409 | // For all triangles |
---|
410 | for (k = 0; k < number_of_elements; k++) { |
---|
411 | // Loop through neighbours and compute edge flux for each |
---|
412 | for (i = 0; i < 3; i++) { |
---|
413 | ki = k * 3 + i; // Linear index to edge i of triangle k |
---|
414 | ki2 = 2 * ki; //k*6 + i*2 |
---|
415 | ki3 = 3*ki; |
---|
416 | |
---|
417 | if (already_computed_flux[ki] == call) { |
---|
418 | // We've already computed the flux across this edge |
---|
419 | continue; |
---|
420 | } |
---|
421 | |
---|
422 | // Get left hand side values from triangle k, edge i |
---|
423 | ql[0] = stage_edge_values[ki]; |
---|
424 | ql[1] = xmom_edge_values[ki]; |
---|
425 | ql[2] = ymom_edge_values[ki]; |
---|
426 | zl = bed_edge_values[ki]; |
---|
427 | hc = max(stage_centroid_values[k] - bed_centroid_values[k],0.0); |
---|
428 | |
---|
429 | // Get right hand side values either from neighbouring triangle |
---|
430 | // or from boundary array (Quantities at neighbour on nearest face). |
---|
431 | n = neighbours[ki]; |
---|
432 | hc_n = hc; |
---|
433 | if (n < 0) { |
---|
434 | // Neighbour is a boundary condition |
---|
435 | m = -n - 1; // Convert negative flag to boundary index |
---|
436 | |
---|
437 | qr[0] = stage_boundary_values[m]; |
---|
438 | qr[1] = xmom_boundary_values[m]; |
---|
439 | qr[2] = ymom_boundary_values[m]; |
---|
440 | zr = zl; // Extend bed elevation to boundary |
---|
441 | } |
---|
442 | else { |
---|
443 | // Neighbour is a real triangle |
---|
444 | hc_n = max(stage_centroid_values[n] - bed_centroid_values[n],0.0); |
---|
445 | m = neighbour_edges[ki]; |
---|
446 | nm = n * 3 + m; // Linear index (triangle n, edge m) |
---|
447 | nm3 = nm*3; |
---|
448 | |
---|
449 | qr[0] = stage_edge_values[nm]; |
---|
450 | qr[1] = xmom_edge_values[nm]; |
---|
451 | qr[2] = ymom_edge_values[nm]; |
---|
452 | zr = bed_edge_values[nm]; |
---|
453 | } |
---|
454 | |
---|
455 | if (fabs(zl-zr)>1.0e-10) { |
---|
456 | report_python_error(AT,"Discontinuous Elevation"); |
---|
457 | return 0.0; |
---|
458 | } |
---|
459 | |
---|
460 | |
---|
461 | smooth=1.0; |
---|
462 | //if((count_wet_edges[k]<=1.0 | count_wet_neighbours[k]<=1.0) & |
---|
463 | // (n>=0 && (count_wet_edges[n]<=1.0 | count_wet_neighbours[n]<=1.0))){ |
---|
464 | // smooth=0.0; |
---|
465 | //} |
---|
466 | |
---|
467 | // Edge flux computation (triangle k, edge i) |
---|
468 | _flux_function_central(ql, qr, zl, zr, |
---|
469 | normals[ki2], normals[ki2 + 1], |
---|
470 | epsilon, h0, limiting_threshold, g, |
---|
471 | edgeflux, &max_speed, &pressure_flux, hc, hc_n, |
---|
472 | speed_max_last, smooth); |
---|
473 | |
---|
474 | |
---|
475 | // Multiply edgeflux by edgelength |
---|
476 | length = edgelengths[ki]; |
---|
477 | edgeflux[0] *= length; |
---|
478 | edgeflux[1] *= length; |
---|
479 | edgeflux[2] *= length; |
---|
480 | |
---|
481 | edgeflux_store[ki3 + 0 ] = -edgeflux[0]; |
---|
482 | edgeflux_store[ki3 + 1 ] = -edgeflux[1]; |
---|
483 | edgeflux_store[ki3 + 2 ] = -edgeflux[2]; |
---|
484 | |
---|
485 | // Update triangle k with flux from edge i |
---|
486 | // bedslope_work contains all gravity related terms -- weighting of |
---|
487 | // conservative and non-conservative versions. |
---|
488 | |
---|
489 | if(ql[0]>zl){ |
---|
490 | tmp=1.0; |
---|
491 | }else{ |
---|
492 | tmp=1.; |
---|
493 | } |
---|
494 | if(hc> h0){ |
---|
495 | //if(stage_centroid_values[k] > count_wet_edges[k]){ |
---|
496 | bedslope_work = length*(g*(hc*ql[0]-0.5*max(ql[0]-zl,0.)*(ql[0]-zl))*tmp + pressure_flux); |
---|
497 | //bedslope_work = length*(g*(hc*stage_centroid_values[k]*0.- |
---|
498 | // 0.5*max(stage_centroid_values[k]-zl,0.)*(stage_centroid_values[k]-zl)) |
---|
499 | // + pressure_flux); |
---|
500 | //bedslope_work+= (1.0-tmp)*length*g*hc*ql[0]; // Non-conservative water surface slope |
---|
501 | pressuregrad_store[ki] = bedslope_work; |
---|
502 | }else{ |
---|
503 | // NOTE: When hc<h0, local contribution to the pressure_flux is |
---|
504 | // entirely computed from the other side of the edge. Hence, we |
---|
505 | // can't necessarily satisfy well-balancing by just assuming that |
---|
506 | // the 2nd and 3rd terms in bedslope_work cancel. So, we force it |
---|
507 | // here -- equivalent to using the water surface gravity term |
---|
508 | bedslope_work = length*(g*(hc*ql[0]*tmp-0.0*max(ql[0]-zl,0.)*(ql[0]-zl))*tmp + 0.0*pressure_flux); |
---|
509 | //bedslope_work = length*(g*(hc*stage_centroid_values[k]-0.0*max(ql[0]-zl,0.)*(ql[0]-zl)) + 0.0*pressure_flux); |
---|
510 | //bedslope_work+= (1.0-tmp)*length*g*hc*ql[0]; // Non-conservative water surface slope |
---|
511 | pressuregrad_store[ki] = bedslope_work; |
---|
512 | } |
---|
513 | |
---|
514 | //if(count_wet_edges[k]<=1.0) pressuregrad_store[ki]=0.0; |
---|
515 | |
---|
516 | already_computed_flux[ki] = call; // #k Done |
---|
517 | |
---|
518 | |
---|
519 | // Update neighbour n with same flux but reversed sign |
---|
520 | if (n >= 0) { |
---|
521 | |
---|
522 | edgeflux_store[nm3 + 0 ] = edgeflux[0]; |
---|
523 | edgeflux_store[nm3 + 1 ] = edgeflux[1]; |
---|
524 | edgeflux_store[nm3 + 2 ] = edgeflux[2]; |
---|
525 | |
---|
526 | if(qr[0]>zr){ |
---|
527 | tmp=1.0; |
---|
528 | }else{ |
---|
529 | tmp=1.; |
---|
530 | } |
---|
531 | if(hc_n> h0){ |
---|
532 | //if(stage_centroid_values[n] > count_wet_edges[n]){ |
---|
533 | bedslope_work = length*(g*(hc_n*qr[0]*tmp-0.5*max(qr[0]-zr,0.)*(qr[0]-zr))*tmp + pressure_flux); |
---|
534 | //bedslope_work = length*(g*(hc_n*stage_centroid_values[n]*0.-0.5*max(stage_centroid_values[n]-zr,0.)* |
---|
535 | // (stage_centroid_values[n]-zr)) + pressure_flux); |
---|
536 | //bedslope_work+= (1.-tmp)*length*g*hc_n*qr[0]; |
---|
537 | pressuregrad_store[nm] = bedslope_work; |
---|
538 | }else{ |
---|
539 | // NOTE: When hc<h0, pressure_flux is entirely computed from the |
---|
540 | // other side of the edge. Hence, we can't necessarily satisfy |
---|
541 | // well-balancing by just assuming that the 2nd and 3rd terms in |
---|
542 | // bedslope_work cancel. So, we force it here -- equivalent to |
---|
543 | // using the water surface gravity term |
---|
544 | bedslope_work = length*(g*(hc_n*qr[0]*tmp-0.0*max(qr[0]-zr,0.)*(qr[0]-zr))*tmp + 0.0*pressure_flux); |
---|
545 | //bedslope_work = length*(g*(hc_n*stage_centroid_values[n]-0.0*max(qr[0]-zr,0.)*(qr[0]-zr)) + 0.0*pressure_flux); |
---|
546 | //bedslope_work+= (1.-tmp)*length*g*hc_n*qr[0]; |
---|
547 | pressuregrad_store[nm] = bedslope_work; |
---|
548 | } |
---|
549 | |
---|
550 | //if(count_wet_edges[n]<=1.0) pressuregrad_store[nm]=0.0; |
---|
551 | |
---|
552 | already_computed_flux[nm] = call; // #n Done |
---|
553 | } |
---|
554 | |
---|
555 | //if(n==576 | n==579) pressuregrad_store[nm]=0.; |
---|
556 | // Update timestep based on edge i and possibly neighbour n |
---|
557 | // GD HACK: |
---|
558 | // FIXME: Presently this 'hacked' to only update the timestep on |
---|
559 | // every 2nd call. This works for rk2 timestepping only, and is |
---|
560 | // needed for correct wetting and drying treatment |
---|
561 | if ((tri_full_flag[k] == 1) ) { |
---|
562 | |
---|
563 | if((call-2)%timestep_order!=0) max_speed = max_speed_array[k]; // HACK to Ensure that local timestep is the same as the last timestep |
---|
564 | |
---|
565 | if (max_speed > epsilon) { |
---|
566 | // Apply CFL condition for triangles joining this edge (triangle k and triangle n) |
---|
567 | |
---|
568 | // CFL for triangle k |
---|
569 | local_timestep = min(local_timestep, radii[k] / max_speed); |
---|
570 | |
---|
571 | if (n >= 0) { |
---|
572 | // Apply CFL condition for neigbour n (which is on the ith edge of triangle k) |
---|
573 | local_timestep = min(local_timestep, radii[n] / max_speed); |
---|
574 | } |
---|
575 | |
---|
576 | } |
---|
577 | } |
---|
578 | |
---|
579 | } // End edge i (and neighbour n) |
---|
580 | |
---|
581 | // Keep track of maximal speeds |
---|
582 | max_speed_array[k] = max_speed; |
---|
583 | |
---|
584 | } // End triangle k |
---|
585 | |
---|
586 | // GD HACK |
---|
587 | // Limit edgefluxes, for mass conservation near wet/dry cells |
---|
588 | for(k=0; k< number_of_elements; k++){ |
---|
589 | //continue; |
---|
590 | hc = max(stage_centroid_values[k] - bed_centroid_values[k],0.); |
---|
591 | // Loop over every edge |
---|
592 | for(i = 0; i<3; i++){ |
---|
593 | if(i==0){ |
---|
594 | // Add up the outgoing flux through the cell |
---|
595 | outgoing_mass_edges=0.0; |
---|
596 | for(useint=0; useint<3; useint++){ |
---|
597 | if(edgeflux_store[3*(3*k+useint)]< 0.){ |
---|
598 | //outgoing_mass_edges+=1.0; |
---|
599 | outgoing_mass_edges+=(edgeflux_store[3*(3*k+useint)]); |
---|
600 | } |
---|
601 | } |
---|
602 | outgoing_mass_edges*=local_timestep; |
---|
603 | } |
---|
604 | |
---|
605 | ki=3*k+i; |
---|
606 | ki2=ki*2; |
---|
607 | ki3 = ki*3; |
---|
608 | |
---|
609 | // Prevent outflow from 'seriously' dry cells |
---|
610 | // Idea: The cell will not go dry if: |
---|
611 | // total_outgoing_flux <= cell volume = Area_triangle*hc |
---|
612 | vol=areas[k]*hc; |
---|
613 | if((edgeflux_store[ki3]< 0.0) && (-outgoing_mass_edges> vol)){ |
---|
614 | |
---|
615 | // This bound could be improved (e.g. we could actually sum |
---|
616 | // the + and - fluxes and check if they are too large). |
---|
617 | // However, the advantage is that we don't have to worry |
---|
618 | // about subsequent changes to the + edgeflux caused by |
---|
619 | // constraints associated with neighbouring triangles. |
---|
620 | tmp = vol/(-(outgoing_mass_edges)) ; |
---|
621 | if(tmp< 1.0){ |
---|
622 | edgeflux_store[ki3+0]*=tmp; |
---|
623 | edgeflux_store[ki3+1]*=tmp; |
---|
624 | edgeflux_store[ki3+2]*=tmp; |
---|
625 | |
---|
626 | // Compute neighbour edge index |
---|
627 | n = neighbours[ki]; |
---|
628 | if(n>=0){ |
---|
629 | nm = 3*n + neighbour_edges[ki]; |
---|
630 | nm3 = nm*3; |
---|
631 | edgeflux_store[nm3+0]*=tmp; |
---|
632 | edgeflux_store[nm3+1]*=tmp; |
---|
633 | edgeflux_store[nm3+2]*=tmp; |
---|
634 | } |
---|
635 | } |
---|
636 | } |
---|
637 | } |
---|
638 | } |
---|
639 | |
---|
640 | // Now add up stage, xmom, ymom explicit updates |
---|
641 | for(k=0; k<number_of_elements; k++){ |
---|
642 | hc = max(stage_centroid_values[k] - bed_centroid_values[k],0.); |
---|
643 | stage_explicit_update[k]=0.; |
---|
644 | xmom_explicit_update[k]=0.; |
---|
645 | ymom_explicit_update[k]=0.; |
---|
646 | |
---|
647 | for(i=0;i<3;i++){ |
---|
648 | ki=3*k+i; |
---|
649 | ki2=ki*2; |
---|
650 | ki3 = ki*3; |
---|
651 | n=neighbours[ki]; |
---|
652 | |
---|
653 | // GD HACK |
---|
654 | // Option to limit advective fluxes |
---|
655 | if(hc > -h0){ |
---|
656 | stage_explicit_update[k] += edgeflux_store[ki3+0]; |
---|
657 | // Cut these terms for shallow flows, and protect stationary states from round-off error |
---|
658 | xmom_explicit_update[k] += edgeflux_store[ki3+1]; |
---|
659 | ymom_explicit_update[k] += edgeflux_store[ki3+2]; |
---|
660 | }else{ |
---|
661 | stage_explicit_update[k] += edgeflux_store[ki3+0]; |
---|
662 | } |
---|
663 | |
---|
664 | |
---|
665 | // If neighbour is a boundary condition, add the flux to the boundary_flux_integral |
---|
666 | if(n<0){ |
---|
667 | boundary_flux_sum[0] += edgeflux_store[ki3]; |
---|
668 | } |
---|
669 | |
---|
670 | // GD HACK |
---|
671 | // Compute bed slope term |
---|
672 | if(hc > -h0){ |
---|
673 | xmom_explicit_update[k] -= normals[ki2]*pressuregrad_store[ki]; |
---|
674 | ymom_explicit_update[k] -= normals[ki2+1]*pressuregrad_store[ki]; |
---|
675 | }else{ |
---|
676 | xmom_explicit_update[k] *= 0.; |
---|
677 | ymom_explicit_update[k] *= 0.; |
---|
678 | } |
---|
679 | |
---|
680 | } // end edge i |
---|
681 | |
---|
682 | // Normalise triangle k by area and store for when all conserved |
---|
683 | // quantities get updated |
---|
684 | inv_area = 1.0 / areas[k]; |
---|
685 | stage_explicit_update[k] *= inv_area; |
---|
686 | xmom_explicit_update[k] *= inv_area; |
---|
687 | ymom_explicit_update[k] *= inv_area; |
---|
688 | } // end cell k |
---|
689 | |
---|
690 | if((call-2)%timestep_order==0) timestep=local_timestep; // Hack to ensure we only update the timestep on the first call within each rk2/rk3 step |
---|
691 | |
---|
692 | // Look for 'dry' edges, and set momentum (& component of momentum_update) |
---|
693 | // in that direction to zero. If we don't do this, then it is possible for |
---|
694 | // the bedslope term normal to that edge to be nonzero, and for momentum to |
---|
695 | // keep 'building' up in the cell without being able to flow out. |
---|
696 | // |
---|
697 | //for(k=0; k<number_of_elements; k++){ |
---|
698 | // // Ignore "Dry" centroid cells, which will automatically have their |
---|
699 | // // momentum set to zero (in _protect) |
---|
700 | // if(stage_centroid_values[k] - bed_centroid_values[k] > H0){ |
---|
701 | // for(i=0;i<3;i++){ |
---|
702 | // ki=3*k+i; |
---|
703 | // if(stage_edge_values[ki] - bed_edge_values[ki] <=0.){ |
---|
704 | // // Compute magnitude of momentum_update in direction normal to edge |
---|
705 | // tmp = xmom_explicit_update[k]*normals[2*ki] + ymom_explicit_update[k]*normals[2*ki+1]; |
---|
706 | // if(tmp > 0.){ |
---|
707 | // // Set component of momentum_update normal to edge to zero |
---|
708 | // // [equivalently, subtract component of momentum_update normal to edge] |
---|
709 | // xmom_explicit_update[k] -= tmp*normals[2*ki]; |
---|
710 | // ymom_explicit_update[k] -= tmp*normals[2*ki+1]; |
---|
711 | // |
---|
712 | // } |
---|
713 | // |
---|
714 | // // Compute magnitude of momentum in direction normal to edge |
---|
715 | // //tmp = xmom_centroid_values[k]*normals[2*ki] + ymom_centroid_values[k]*normals[2*ki+1]; |
---|
716 | // //if(tmp > 0.){ |
---|
717 | // // // Set component of momentum normal to edge to zero |
---|
718 | // // // [equivalently, subtract component of momentum normal to edge] |
---|
719 | // // xmom_centroid_values[k] -= tmp*normals[2*ki]; |
---|
720 | // // ymom_centroid_values[k] -= tmp*normals[2*ki+1]; |
---|
721 | // // |
---|
722 | // //} |
---|
723 | // } |
---|
724 | // } |
---|
725 | // } |
---|
726 | //} |
---|
727 | |
---|
728 | // |
---|
729 | // |
---|
730 | // if((fabs(xmom_explicit_update[k])>1.0e-06)|fabs(ymom_explicit_update[k])>1.0e-06){ |
---|
731 | // printf(" %e, %e, %e,%e,%e,%e, %e,%e,%e,%d,%e,%e,%e\n", stage_explicit_update[k], xmom_explicit_update[k], ymom_explicit_update[k], |
---|
732 | // stage_centroid_values[k], bed_centroid_values[k], |
---|
733 | // stage_centroid_values[k]- bed_centroid_values[k], |
---|
734 | // stage_edge_values[3*neighbours[3*k+0]+neighbour_edges[3*k+0]], |
---|
735 | // stage_edge_values[3*neighbours[3*k+1]+neighbour_edges[3*k+1]], |
---|
736 | // stage_edge_values[3*neighbours[3*k+2]+neighbour_edges[3*k+2]], |
---|
737 | // k, |
---|
738 | // stage_edge_values[3*k+0], |
---|
739 | // stage_edge_values[3*k+1], |
---|
740 | // stage_edge_values[3*k+2]); |
---|
741 | // } |
---|
742 | //} |
---|
743 | //printf("max ymom edge value is: %e \n", bedtop); |
---|
744 | //report_python_error(AT, "Written out stage, xmom and ymom updates"); |
---|
745 | //return -1; |
---|
746 | // |
---|
747 | free(count_wet_edges); |
---|
748 | free(count_wet_neighbours); |
---|
749 | free(edgeflux_store); |
---|
750 | free(pressuregrad_store); |
---|
751 | |
---|
752 | return timestep; |
---|
753 | } |
---|
754 | |
---|
755 | // Protect against the water elevation falling below the triangle bed |
---|
756 | int _protect(int N, |
---|
757 | double minimum_allowed_height, |
---|
758 | double maximum_allowed_speed, |
---|
759 | double epsilon, |
---|
760 | double* wc, |
---|
761 | double* wv, |
---|
762 | double* zc, |
---|
763 | double* zv, |
---|
764 | double* xmomc, |
---|
765 | double* ymomc, |
---|
766 | double* areas, |
---|
767 | double* xc, |
---|
768 | double* yc) { |
---|
769 | |
---|
770 | int k; |
---|
771 | double hc, bmin, bmax; |
---|
772 | double u, v, reduced_speed; |
---|
773 | static double mass_error=0.; |
---|
774 | // This acts like minimum_allowed height, but scales with the vertical |
---|
775 | // distance between the bed_centroid_value and the max bed_edge_value of |
---|
776 | // every triangle. |
---|
777 | double minimum_relative_height=0.05; |
---|
778 | int mass_added=0; |
---|
779 | |
---|
780 | // Protect against inifintesimal and negative heights |
---|
781 | //if (maximum_allowed_speed < epsilon) { |
---|
782 | for (k=0; k<N; k++) { |
---|
783 | hc = wc[k] - zc[k]; |
---|
784 | // Definine the maximum bed edge value on triangle k. |
---|
785 | //bmax = 0.5*max((zv[3*k]+zv[3*k+1]),max((zv[3*k+1]+zv[3*k+2]),(zv[3*k+2]+zv[3*k]))); |
---|
786 | bmax = max(zv[3*k],max(zv[3*k+2],zv[3*k+1])); |
---|
787 | |
---|
788 | //if (hc < max(minimum_relative_height*(bmax-zc[k]), minimum_allowed_height)) { |
---|
789 | // xmomc[k]*=0.1; |
---|
790 | // ymomc[k]*=0.1; |
---|
791 | //} |
---|
792 | |
---|
793 | |
---|
794 | //if (hc < minimum_allowed_height*2.0 | hc < minimum_relative_height*(bmax-zc[k]) ){ |
---|
795 | if (hc < minimum_allowed_height*2.0 ){ |
---|
796 | //if (hc < minimum_allowed_height*2.0 ){ |
---|
797 | // Set momentum to zero and ensure h is non negative |
---|
798 | //xmomc[k] = 0.;//xmomc[k]*hc*max(hc-minimum_allowed_height,0.)/(2.0*minimum_allowed_height*minimum_allowed_height);// 0.0; |
---|
799 | //ymomc[k] = 0.;//ymomc[k]*hc*max(hc-minimum_allowed_height,0.)/(2.0*minimum_allowed_height*minimum_allowed_height);// 0.0; |
---|
800 | //xmomc[k] = xmomc[k]*hc*max(hc-minimum_allowed_height,0.)/(2.0*minimum_allowed_height*minimum_allowed_height);// 0.0; |
---|
801 | //ymomc[k] = ymomc[k]*hc*max(hc-minimum_allowed_height,0.)/(2.0*minimum_allowed_height*minimum_allowed_height);// 0.0; |
---|
802 | //xmomc[k] = xmomc[k]*max(hc-minimum_allowed_height,0.)/(minimum_allowed_height);// 0.0; |
---|
803 | //ymomc[k] = ymomc[k]*max(hc-minimum_allowed_height,0.)/(minimum_allowed_height);// 0.0; |
---|
804 | |
---|
805 | if (hc <= 0.0){ |
---|
806 | // Definine the minimum bed edge value on triangle k. |
---|
807 | //bmin = 0.5*min((zv[3*k]+zv[3*k+1]),min((zv[3*k+1]+zv[3*k+2]),(zv[3*k+2]+zv[3*k]))); |
---|
808 | //bmin =0.5*bmin + 0.5*min(zv[3*k],min(zv[3*k+1],zv[3*k+2])); |
---|
809 | //bmin =min(zv[3*k],min(zv[3*k+1],zv[3*k+2])) -minimum_allowed_height; |
---|
810 | bmin=zc[k]-minimum_allowed_height;//-1.0e-03; |
---|
811 | // Minimum allowed stage = bmin |
---|
812 | |
---|
813 | // WARNING: ADDING MASS if wc[k]<bmin |
---|
814 | if(wc[k]<bmin){ |
---|
815 | mass_error+=(bmin-wc[k])*areas[k]; |
---|
816 | mass_added=1; //Flag to warn of added mass |
---|
817 | |
---|
818 | wc[k] = max(wc[k], bmin); |
---|
819 | //printf(" mass_add, %f, %f, %f,%f,%f,%d\n", xc[k], yc[k], wc[k],zc[k],wc[k]-zc[k], k) ; |
---|
820 | |
---|
821 | |
---|
822 | // FIXME: Set vertex values as well. Seems that this shouldn't be |
---|
823 | // needed. However, from memory this is important at the first |
---|
824 | // time step, for 'dry' areas where the designated stage is |
---|
825 | // less than the bed centroid value |
---|
826 | //wv[3*k] = max(wv[3*k], min(bmin, zv[3*k]-minimum_allowed_height)); |
---|
827 | //wv[3*k+1] = max(wv[3*k+1], min(bmin, zv[3*k+1]-minimum_allowed_height)); |
---|
828 | //wv[3*k+2] = max(wv[3*k+2], min(bmin, zv[3*k+2]-minimum_allowed_height)); |
---|
829 | wv[3*k] = min(bmin, wc[3*k]); //zv[3*k]-minimum_allowed_height); |
---|
830 | wv[3*k+1] = min(bmin, wc[3*k+1]); //zv[3*k+1]-minimum_allowed_height); |
---|
831 | wv[3*k+2] = min(bmin, wc[3*k+2]); //zv[3*k+2]-minimum_allowed_height); |
---|
832 | } |
---|
833 | } |
---|
834 | } |
---|
835 | } |
---|
836 | |
---|
837 | if(mass_added==1){ |
---|
838 | printf("Cumulative mass protection: %f m^3 \n", mass_error); |
---|
839 | } |
---|
840 | return 0; |
---|
841 | } |
---|
842 | |
---|
843 | int find_qmin_and_qmax(double dq0, double dq1, double dq2, |
---|
844 | double *qmin, double *qmax){ |
---|
845 | // Considering the centroid of an FV triangle and the vertices of its |
---|
846 | // auxiliary triangle, find |
---|
847 | // qmin=min(q)-qc and qmax=max(q)-qc, |
---|
848 | // where min(q) and max(q) are respectively min and max over the |
---|
849 | // four values (at the centroid of the FV triangle and the auxiliary |
---|
850 | // triangle vertices), |
---|
851 | // and qc is the centroid |
---|
852 | // dq0=q(vertex0)-q(centroid of FV triangle) |
---|
853 | // dq1=q(vertex1)-q(vertex0) |
---|
854 | // dq2=q(vertex2)-q(vertex0) |
---|
855 | |
---|
856 | // This is a simple implementation |
---|
857 | *qmax = max(max(dq0, max(dq0+dq1, dq0+dq2)), 0.0) ; |
---|
858 | *qmin = min(min(dq0, min(dq0+dq1, dq0+dq2)), 0.0) ; |
---|
859 | |
---|
860 | return 0; |
---|
861 | } |
---|
862 | |
---|
863 | int limit_gradient(double *dqv, double qmin, double qmax, double beta_w){ |
---|
864 | // Given provisional jumps dqv from the FV triangle centroid to its |
---|
865 | // vertices and jumps qmin (qmax) between the centroid of the FV |
---|
866 | // triangle and the minimum (maximum) of the values at the centroid of |
---|
867 | // the FV triangle and the auxiliary triangle vertices, |
---|
868 | // calculate a multiplicative factor phi by which the provisional |
---|
869 | // vertex jumps are to be limited |
---|
870 | |
---|
871 | int i; |
---|
872 | double r=1000.0, r0=1.0, phi=1.0; |
---|
873 | static double TINY = 1.0e-100; // to avoid machine accuracy problems. |
---|
874 | // FIXME: Perhaps use the epsilon used elsewhere. |
---|
875 | |
---|
876 | // Any provisional jump with magnitude < TINY does not contribute to |
---|
877 | // the limiting process. |
---|
878 | //return 0; |
---|
879 | |
---|
880 | for (i=0;i<3;i++){ |
---|
881 | if (dqv[i]<-TINY) |
---|
882 | r0=qmin/dqv[i]; |
---|
883 | |
---|
884 | if (dqv[i]>TINY) |
---|
885 | r0=qmax/dqv[i]; |
---|
886 | |
---|
887 | r=min(r0,r); |
---|
888 | } |
---|
889 | |
---|
890 | phi=min(r*beta_w,1.0); |
---|
891 | //phi=1.; |
---|
892 | dqv[0]=dqv[0]*phi; |
---|
893 | dqv[1]=dqv[1]*phi; |
---|
894 | dqv[2]=dqv[2]*phi; |
---|
895 | |
---|
896 | |
---|
897 | //printf("%lf \n ", beta_w); |
---|
898 | |
---|
899 | return 0; |
---|
900 | } |
---|
901 | |
---|
902 | // Computational routine |
---|
903 | int _extrapolate_second_order_edge_sw(int number_of_elements, |
---|
904 | double epsilon, |
---|
905 | double minimum_allowed_height, |
---|
906 | double beta_w, |
---|
907 | double beta_w_dry, |
---|
908 | double beta_uh, |
---|
909 | double beta_uh_dry, |
---|
910 | double beta_vh, |
---|
911 | double beta_vh_dry, |
---|
912 | long* surrogate_neighbours, |
---|
913 | long* neighbour_edges, |
---|
914 | long* number_of_boundaries, |
---|
915 | double* centroid_coordinates, |
---|
916 | double* stage_centroid_values, |
---|
917 | double* xmom_centroid_values, |
---|
918 | double* ymom_centroid_values, |
---|
919 | double* elevation_centroid_values, |
---|
920 | double* edge_coordinates, |
---|
921 | double* stage_edge_values, |
---|
922 | double* xmom_edge_values, |
---|
923 | double* ymom_edge_values, |
---|
924 | double* elevation_edge_values, |
---|
925 | double* stage_vertex_values, |
---|
926 | double* xmom_vertex_values, |
---|
927 | double* ymom_vertex_values, |
---|
928 | double* elevation_vertex_values, |
---|
929 | int optimise_dry_cells, |
---|
930 | int extrapolate_velocity_second_order) { |
---|
931 | |
---|
932 | // Local variables |
---|
933 | double a, b; // Gradient vector used to calculate edge values from centroids |
---|
934 | int k, k0, k1, k2, k3, k6, coord_index, i, ii, ktmp, k_wetdry; |
---|
935 | double x, y, x0, y0, x1, y1, x2, y2, xv0, yv0, xv1, yv1, xv2, yv2; // Vertices of the auxiliary triangle |
---|
936 | double dx1, dx2, dy1, dy2, dxv0, dxv1, dxv2, dyv0, dyv1, dyv2, dq0, dq1, dq2, area2, inv_area2; |
---|
937 | double dqv[3], qmin, qmax, hmin, hmax, bedmax,bedmin, stagemin; |
---|
938 | double hc, h0, h1, h2, beta_tmp, hfactor, xtmp, ytmp, weight, tmp; |
---|
939 | double dk, dv0, dv1, dv2, de[3], demin, dcmax, r0scale, vect_norm, l1, l2, a_bs, b_bs, area_e, inv_area_e; |
---|
940 | |
---|
941 | double *xmom_centroid_store, *ymom_centroid_store, *stage_centroid_store, *min_elevation_edgevalue, *max_elevation_edgevalue; |
---|
942 | double *cell_wetness_scale; |
---|
943 | int *count_wet_neighbours; |
---|
944 | |
---|
945 | // Use malloc to avoid putting these variables on the stack, which can cause |
---|
946 | // segfaults in large model runs |
---|
947 | xmom_centroid_store = malloc(number_of_elements*sizeof(double)); |
---|
948 | ymom_centroid_store = malloc(number_of_elements*sizeof(double)); |
---|
949 | stage_centroid_store = malloc(number_of_elements*sizeof(double)); |
---|
950 | min_elevation_edgevalue = malloc(number_of_elements*sizeof(double)); |
---|
951 | max_elevation_edgevalue = malloc(number_of_elements*sizeof(double)); |
---|
952 | cell_wetness_scale = malloc(number_of_elements*sizeof(double)); |
---|
953 | count_wet_neighbours = malloc(number_of_elements*sizeof(int)); |
---|
954 | |
---|
955 | if(extrapolate_velocity_second_order==1){ |
---|
956 | // Replace momentum centroid with velocity centroid to allow velocity |
---|
957 | // extrapolation This will be changed back at the end of the routine |
---|
958 | for (k=0; k<number_of_elements; k++){ |
---|
959 | |
---|
960 | dk = max(stage_centroid_values[k]-elevation_centroid_values[k],minimum_allowed_height); |
---|
961 | xmom_centroid_store[k] = xmom_centroid_values[k]; |
---|
962 | xmom_centroid_values[k] = xmom_centroid_values[k]/dk; |
---|
963 | |
---|
964 | ymom_centroid_store[k] = ymom_centroid_values[k]; |
---|
965 | ymom_centroid_values[k] = ymom_centroid_values[k]/dk; |
---|
966 | |
---|
967 | min_elevation_edgevalue[k] = min(elevation_edge_values[3*k], |
---|
968 | min(elevation_edge_values[3*k+1], |
---|
969 | elevation_edge_values[3*k+2])); |
---|
970 | max_elevation_edgevalue[k] = max(elevation_edge_values[3*k], |
---|
971 | max(elevation_edge_values[3*k+1], |
---|
972 | elevation_edge_values[3*k+2])); |
---|
973 | |
---|
974 | } |
---|
975 | |
---|
976 | } |
---|
977 | |
---|
978 | // |
---|
979 | // Compute some useful statistics on wetness/dryness |
---|
980 | // |
---|
981 | for(k=0; k<number_of_elements;k++){ |
---|
982 | cell_wetness_scale[k] = 0.; |
---|
983 | // Check if cell k is wet |
---|
984 | //if(stage_centroid_values[k] > elevation_centroid_values[k]){ |
---|
985 | if(stage_centroid_values[k] > elevation_centroid_values[k] + 2*minimum_allowed_height+epsilon){ |
---|
986 | //if(stage_centroid_values[k] > max_elevation_edgevalue[k] + minimum_allowed_height+epsilon){ |
---|
987 | cell_wetness_scale[k] = 1.; |
---|
988 | } |
---|
989 | } |
---|
990 | // |
---|
991 | for(k=0; k<number_of_elements;k++){ |
---|
992 | // Count the wet neighbours |
---|
993 | count_wet_neighbours[k]=0; |
---|
994 | for (i=0; i<3; i++){ |
---|
995 | ktmp = surrogate_neighbours[3*k+i]; |
---|
996 | if( (ktmp >= 0) && cell_wetness_scale[ktmp]>0.){ |
---|
997 | count_wet_neighbours[k]+=1; |
---|
998 | }else if(ktmp<=0){ |
---|
999 | // Boundary condition -- FIXME: assume wet |
---|
1000 | count_wet_neighbours[k]+=1; |
---|
1001 | } |
---|
1002 | |
---|
1003 | |
---|
1004 | } |
---|
1005 | } |
---|
1006 | |
---|
1007 | // Alternative 'PROTECT' step |
---|
1008 | for(k=0; k<number_of_elements;k++){ |
---|
1009 | //if(count_wet_neighbours[k]<=3){ |
---|
1010 | if(1==1){ |
---|
1011 | bedmax = max(elevation_vertex_values[3*k], |
---|
1012 | max(elevation_vertex_values[3*k+1], |
---|
1013 | elevation_vertex_values[3*k+2])); |
---|
1014 | if((cell_wetness_scale[k]==0. ) || |
---|
1015 | ((stage_centroid_values[k] - elevation_centroid_values[k] < 0.05*(bedmax-elevation_centroid_values[k])) & |
---|
1016 | count_wet_neighbours[k]<=3) ){ |
---|
1017 | xmom_centroid_store[k]=0.; |
---|
1018 | xmom_centroid_values[k]=0.; |
---|
1019 | ymom_centroid_store[k]=0.; |
---|
1020 | ymom_centroid_values[k]=0.; |
---|
1021 | } |
---|
1022 | } |
---|
1023 | } |
---|
1024 | |
---|
1025 | // First treat all 'fully wet' cells, then treat 'partially dry' cells |
---|
1026 | for(k_wetdry=0; k_wetdry<2; k_wetdry++){ |
---|
1027 | |
---|
1028 | // Begin extrapolation routine |
---|
1029 | for (k = 0; k < number_of_elements; k++) |
---|
1030 | { |
---|
1031 | |
---|
1032 | // First treat all 'fully wet' cells, then treat 'partially dry' cells |
---|
1033 | // For partially wet cells, we now know that the edges of neighbouring |
---|
1034 | // fully wet cells have been defined |
---|
1035 | if( cell_wetness_scale[k]==1.0*(1-k_wetdry) ){ |
---|
1036 | continue; |
---|
1037 | } |
---|
1038 | |
---|
1039 | // Useful indices |
---|
1040 | k3=k*3; |
---|
1041 | k6=k*6; |
---|
1042 | |
---|
1043 | if (number_of_boundaries[k]==3) |
---|
1044 | { |
---|
1045 | // No neighbours, set gradient on the triangle to zero |
---|
1046 | |
---|
1047 | stage_edge_values[k3] = stage_centroid_values[k]; |
---|
1048 | stage_edge_values[k3+1] = stage_centroid_values[k]; |
---|
1049 | stage_edge_values[k3+2] = stage_centroid_values[k]; |
---|
1050 | xmom_edge_values[k3] = xmom_centroid_values[k]; |
---|
1051 | xmom_edge_values[k3+1] = xmom_centroid_values[k]; |
---|
1052 | xmom_edge_values[k3+2] = xmom_centroid_values[k]; |
---|
1053 | ymom_edge_values[k3] = ymom_centroid_values[k]; |
---|
1054 | ymom_edge_values[k3+1] = ymom_centroid_values[k]; |
---|
1055 | ymom_edge_values[k3+2] = ymom_centroid_values[k]; |
---|
1056 | |
---|
1057 | continue; |
---|
1058 | } |
---|
1059 | else |
---|
1060 | { |
---|
1061 | // Triangle k has one or more neighbours. |
---|
1062 | // Get centroid and edge coordinates of the triangle |
---|
1063 | |
---|
1064 | // Get the edge coordinates |
---|
1065 | xv0 = edge_coordinates[k6]; |
---|
1066 | yv0 = edge_coordinates[k6+1]; |
---|
1067 | xv1 = edge_coordinates[k6+2]; |
---|
1068 | yv1 = edge_coordinates[k6+3]; |
---|
1069 | xv2 = edge_coordinates[k6+4]; |
---|
1070 | yv2 = edge_coordinates[k6+5]; |
---|
1071 | |
---|
1072 | // Get the centroid coordinates |
---|
1073 | coord_index = 2*k; |
---|
1074 | x = centroid_coordinates[coord_index]; |
---|
1075 | y = centroid_coordinates[coord_index+1]; |
---|
1076 | |
---|
1077 | // Store x- and y- differentials for the edges of |
---|
1078 | // triangle k relative to the centroid |
---|
1079 | dxv0 = xv0 - x; |
---|
1080 | dxv1 = xv1 - x; |
---|
1081 | dxv2 = xv2 - x; |
---|
1082 | dyv0 = yv0 - y; |
---|
1083 | dyv1 = yv1 - y; |
---|
1084 | dyv2 = yv2 - y; |
---|
1085 | |
---|
1086 | |
---|
1087 | // Compute bed slope as a reference |
---|
1088 | //area_e = (yv2-yv0)*(xv1-xv0) - (yv1-yv0)*(xv2-xv0); |
---|
1089 | //inv_area_e=1.0/area_e; |
---|
1090 | //a_bs = (yv2 - yv0)*(elevation_edge_values[k3+1]-elevation_edge_values[k3+0]) - |
---|
1091 | // (yv1 - yv0)*(elevation_edge_values[k3+2]-elevation_edge_values[k3+0]); |
---|
1092 | //a_bs *= inv_area_e; |
---|
1093 | |
---|
1094 | //b_bs = -(xv2 - xv0)*(elevation_edge_values[k3+1]-elevation_edge_values[k3+0]) + |
---|
1095 | // (xv1 - xv0)*(elevation_edge_values[k3+2]-elevation_edge_values[k3+0]); |
---|
1096 | //b_bs *= inv_area_e; |
---|
1097 | |
---|
1098 | //printf("slopes: %f, %f \n", a_bs, b_bs); |
---|
1099 | } |
---|
1100 | |
---|
1101 | |
---|
1102 | |
---|
1103 | if (number_of_boundaries[k]<=1) |
---|
1104 | { |
---|
1105 | //============================================== |
---|
1106 | // Number of boundaries <= 1 |
---|
1107 | // 'Typical case' |
---|
1108 | //============================================== |
---|
1109 | |
---|
1110 | |
---|
1111 | // If no boundaries, auxiliary triangle is formed |
---|
1112 | // from the centroids of the three neighbours |
---|
1113 | // If one boundary, auxiliary triangle is formed |
---|
1114 | // from this centroid and its two neighbours |
---|
1115 | |
---|
1116 | k0 = surrogate_neighbours[k3]; |
---|
1117 | k1 = surrogate_neighbours[k3 + 1]; |
---|
1118 | k2 = surrogate_neighbours[k3 + 2]; |
---|
1119 | |
---|
1120 | // Test to see whether we accept the surrogate neighbours |
---|
1121 | // Note that if ki is replaced with k in more than 1 neighbour, then the |
---|
1122 | // triangle area will be zero, and a first order extrapolation will be |
---|
1123 | // used |
---|
1124 | //if(stage_centroid_values[k2]<=max_elevation_edgevalue[k2]+epsilon){ |
---|
1125 | //if(stage_centroid_values[k2]<=elevation_centroid_values[k2]+minimum_allowed_height+epsilon){ |
---|
1126 | if(k2<0 || cell_wetness_scale[k2]==0.0){ |
---|
1127 | k2 = k ; |
---|
1128 | } |
---|
1129 | //if(stage_centroid_values[k0]<=max_elevation_edgevalue[k0]+epsilon){ |
---|
1130 | //if(stage_centroid_values[k0]<=elevation_centroid_values[k0]+minimum_allowed_height+epsilon){ |
---|
1131 | if(k0 < 0 || cell_wetness_scale[k0]==0.0){ |
---|
1132 | k0 = k ; |
---|
1133 | } |
---|
1134 | //if(stage_centroid_values[k1]<=max_elevation_edgevalue[k1]+epsilon){ |
---|
1135 | //if(stage_centroid_values[k1]<=elevation_centroid_values[k1]+minimum_allowed_height+epsilon){ |
---|
1136 | if(k1 < 0 || cell_wetness_scale[k1]==0.0){ |
---|
1137 | k1 = k ; |
---|
1138 | } |
---|
1139 | |
---|
1140 | // Take note if the max neighbour bed elevation is greater than the min |
---|
1141 | // neighbour stage -- suggests a 'steep' bed relative to the flow |
---|
1142 | bedmax = max(elevation_centroid_values[k], |
---|
1143 | max(elevation_centroid_values[k0], |
---|
1144 | max(elevation_centroid_values[k1], |
---|
1145 | elevation_centroid_values[k2]))); |
---|
1146 | bedmin = min(elevation_centroid_values[k], |
---|
1147 | min(elevation_centroid_values[k0], |
---|
1148 | min(elevation_centroid_values[k1], |
---|
1149 | elevation_centroid_values[k2]))); |
---|
1150 | stagemin = min(max(stage_centroid_values[k], elevation_centroid_values[k]), |
---|
1151 | min(max(stage_centroid_values[k0], elevation_centroid_values[k0]), |
---|
1152 | min(max(stage_centroid_values[k1], elevation_centroid_values[k1]), |
---|
1153 | max(stage_centroid_values[k2], elevation_centroid_values[k2])))); |
---|
1154 | |
---|
1155 | // Get the auxiliary triangle's vertex coordinates |
---|
1156 | // (really the centroids of neighbouring triangles) |
---|
1157 | coord_index = 2*k0; |
---|
1158 | x0 = centroid_coordinates[coord_index]; |
---|
1159 | y0 = centroid_coordinates[coord_index+1]; |
---|
1160 | |
---|
1161 | coord_index = 2*k1; |
---|
1162 | x1 = centroid_coordinates[coord_index]; |
---|
1163 | y1 = centroid_coordinates[coord_index+1]; |
---|
1164 | |
---|
1165 | coord_index = 2*k2; |
---|
1166 | x2 = centroid_coordinates[coord_index]; |
---|
1167 | y2 = centroid_coordinates[coord_index+1]; |
---|
1168 | |
---|
1169 | // Store x- and y- differentials for the vertices |
---|
1170 | // of the auxiliary triangle |
---|
1171 | dx1 = x1 - x0; |
---|
1172 | dx2 = x2 - x0; |
---|
1173 | dy1 = y1 - y0; |
---|
1174 | dy2 = y2 - y0; |
---|
1175 | |
---|
1176 | // Calculate 2*area of the auxiliary triangle |
---|
1177 | // The triangle is guaranteed to be counter-clockwise |
---|
1178 | area2 = dy2*dx1 - dy1*dx2; |
---|
1179 | |
---|
1180 | //// Treat triangles with zero or 1 wet neighbours (area2 <=0.) |
---|
1181 | if ((area2 <= 0.) )// || (cell_wetness_scale[k]==0.)) //|(count_wet_neighbours[k]==0)) |
---|
1182 | { |
---|
1183 | |
---|
1184 | if(0==1){ |
---|
1185 | //// Friction slope type extrapolation -- emulating steady flow |
---|
1186 | //// d(stage)/dx = - u*sqrt(u**2 + v**2)*n**2/depth**(4/3) |
---|
1187 | //hc=max(stage_centroid_values[k] - elevation_centroid_values[k],0.0); |
---|
1188 | //if(hc>1.0e-06){ |
---|
1189 | // tmp = sqrt(xmom_centroid_values[k]*xmom_centroid_values[k] + |
---|
1190 | // ymom_centroid_values[k]*ymom_centroid_values[k])*0.03*0.03; |
---|
1191 | // tmp /=pow(hc,10.0/3.0); |
---|
1192 | //}else{ |
---|
1193 | // tmp=0.0; |
---|
1194 | //} |
---|
1195 | //a = -xmom_centroid_values[k]*tmp; |
---|
1196 | //b = -ymom_centroid_values[k]*tmp; |
---|
1197 | |
---|
1198 | //// Limit gradient to be between the bed slope, and zero |
---|
1199 | //if(a*a_bs<0.) a=0.; |
---|
1200 | //if(fabs(a)>fabs(a_bs)) a=a_bs; |
---|
1201 | //if(b*b_bs<0.) b=0.; |
---|
1202 | //if(fabs(b)>fabs(b_bs)) b=b_bs; |
---|
1203 | |
---|
1204 | |
---|
1205 | //dqv[0] = a*dxv0 + b*dyv0; |
---|
1206 | //dqv[1] = a*dxv1 + b*dyv1; |
---|
1207 | //dqv[2] = a*dxv2 + b*dyv2; |
---|
1208 | |
---|
1209 | //stage_edge_values[k3+0] = stage_centroid_values[k] + dqv[0]; |
---|
1210 | //stage_edge_values[k3+1] = stage_centroid_values[k] + dqv[1]; |
---|
1211 | //stage_edge_values[k3+2] = stage_centroid_values[k] + dqv[2]; |
---|
1212 | }else{ |
---|
1213 | // Constant stage extrapolation |
---|
1214 | //stage_edge_values[k3] = stage_centroid_values[k]; |
---|
1215 | //stage_edge_values[k3+1] = stage_centroid_values[k]; |
---|
1216 | //stage_edge_values[k3+2] = stage_centroid_values[k]; |
---|
1217 | } |
---|
1218 | //}else{ |
---|
1219 | //}else{ |
---|
1220 | // Dry cell with a single 'wet' neighbour |
---|
1221 | |
---|
1222 | // Compute indices of neighbouring wet cell / edge |
---|
1223 | //ktmp = k0*(1-(k0==k)) + k1*(1-(k1==k)) + k2*(1-(k2==k)); |
---|
1224 | //ii = 0*(1-(k0==k)) + 1*(1-(k1==k)) + 2*(1-(k2==k)); |
---|
1225 | //if((ii<0)|(ii>2)){ |
---|
1226 | // printf("Invalid ii value \n"); |
---|
1227 | //} |
---|
1228 | |
---|
1229 | //ktmp = 3*ktmp+neighbour_edges[3*k+ii]; |
---|
1230 | //stage_edge_values[k3]= stage_edge_values[ktmp];//max(stage_edge_values[3*ktmp+neighbour_edges[3*ktmp+i]], elevation_edge_values[k3]) ; |
---|
1231 | //stage_edge_values[k3+1]= stage_edge_values[ktmp];//max(stage_edge_values[3*ktmp+neighbour_edges[3*ktmp+i]], elevation_edge_values[k3+1]); |
---|
1232 | //stage_edge_values[k3+2]= stage_edge_values[ktmp];//max(stage_edge_values[3*ktmp+neighbour_edges[3*ktmp +i]], elevation_edge_values[k3+2]); |
---|
1233 | |
---|
1234 | //} |
---|
1235 | if( (k==k0) & (k==k1) & (k==k2)){ |
---|
1236 | // // Isolated wet cell -- use constant depth extrapolation for stage |
---|
1237 | // stage_edge_values[k3] = stage_centroid_values[k]- elevation_centroid_values[k] + elevation_edge_values[k3]; |
---|
1238 | // stage_edge_values[k3+1] = stage_centroid_values[k]- elevation_centroid_values[k] + elevation_edge_values[k3+1]; |
---|
1239 | // stage_edge_values[k3+2] = stage_centroid_values[k]- elevation_centroid_values[k] + elevation_edge_values[k3+2]; |
---|
1240 | //} |
---|
1241 | // // Isolated wet cell -- constant depth extrapolation, but don't let water flow uphill |
---|
1242 | // //stage_edge_values[k3] = min(stage_centroid_values[k], stage_centroid_values[k]- elevation_centroid_values[k] + elevation_edge_values[k3]); |
---|
1243 | // //stage_edge_values[k3+1] = min(stage_centroid_values[k], stage_centroid_values[k]- elevation_centroid_values[k] + elevation_edge_values[k3+1]); |
---|
1244 | // //stage_edge_values[k3+2] = min(stage_centroid_values[k], stage_centroid_values[k]- elevation_centroid_values[k] + elevation_edge_values[k3+2]); |
---|
1245 | // // Isolated wet cell -- constant stage extrapolation |
---|
1246 | stage_edge_values[k3] = stage_centroid_values[k]; |
---|
1247 | stage_edge_values[k3+1] = stage_centroid_values[k]; |
---|
1248 | stage_edge_values[k3+2] = stage_centroid_values[k]; |
---|
1249 | }else{ |
---|
1250 | // // Cell with one wet neighbour. |
---|
1251 | // // Find which neighbour is wet [if k!=k0, then k0 is wet] |
---|
1252 | if(k!=k0){ |
---|
1253 | ktmp=k0; |
---|
1254 | ii=0; |
---|
1255 | xtmp = x0; |
---|
1256 | ytmp = y0; |
---|
1257 | }else if(k!=k1){ |
---|
1258 | ktmp=k1; |
---|
1259 | ii=1; |
---|
1260 | xtmp = x1; |
---|
1261 | ytmp = y1; |
---|
1262 | }else if(k!=k2){ |
---|
1263 | ktmp=k2; |
---|
1264 | ii=2; |
---|
1265 | xtmp = x2; |
---|
1266 | ytmp = y2; |
---|
1267 | }else{ |
---|
1268 | printf("ERROR in extrapolation routine: Should have had one ki == k \n"); |
---|
1269 | report_python_error(AT, "Negative triangle area"); |
---|
1270 | return -1; |
---|
1271 | } |
---|
1272 | |
---|
1273 | // //if(stage_centroid_values[k]>elevation_centroid_values[k]+minimum_allowed_height){ |
---|
1274 | // if(k_wetdry==0){ |
---|
1275 | // // // Cell is wet |
---|
1276 | // // //if(count_wet_neighbours[ktmp]>0){ |
---|
1277 | // // // stage_edge_values[k3]= stage_centroid_values[k]; |
---|
1278 | // // // stage_edge_values[k3+1]= stage_centroid_values[k]; |
---|
1279 | // // // stage_edge_values[k3+2]= stage_centroid_values[k]; |
---|
1280 | // // //}else{ |
---|
1281 | // // // Constant depth extrapolation |
---|
1282 | if(stage_centroid_values[k]<stage_centroid_values[ktmp]){ |
---|
1283 | // Constant stage extrapolation reduces the issue of having the bed-slope term playing up on nearly dry cells |
---|
1284 | // stage_edge_values[k3]= stage_centroid_values[k]-elevation_centroid_values[k]+elevation_edge_values[k3]; |
---|
1285 | // stage_edge_values[k3+1]= stage_centroid_values[k] -elevation_centroid_values[k]+elevation_edge_values[k3+1]; |
---|
1286 | // stage_edge_values[k3+2]= stage_centroid_values[k] -elevation_centroid_values[k]+elevation_edge_values[k3+2]; |
---|
1287 | stage_edge_values[k3] = stage_centroid_values[k]; |
---|
1288 | stage_edge_values[k3+1] = stage_centroid_values[k]; |
---|
1289 | stage_edge_values[k3+2] = stage_centroid_values[k]; |
---|
1290 | }else{ |
---|
1291 | // // stage_edge_values[k3] = stage_centroid_values[ktmp]; |
---|
1292 | // // stage_edge_values[k3+1] = stage_centroid_values[ktmp]; |
---|
1293 | // // stage_edge_values[k3+2] = stage_centroid_values[ktmp]; |
---|
1294 | //stage_edge_values[k3]= max(stage_centroid_values[k]-elevation_centroid_values[k]+elevation_edge_values[k3], stage_centroid_values[ktmp]); |
---|
1295 | //stage_edge_values[k3+1]= max(stage_centroid_values[k] -elevation_centroid_values[k]+elevation_edge_values[k3+1],stage_centroid_values[ktmp]); |
---|
1296 | //stage_edge_values[k3+2]= max(stage_centroid_values[k] -elevation_centroid_values[k]+elevation_edge_values[k3+2], stage_centroid_values[ktmp]); |
---|
1297 | ktmp = 3*ktmp+neighbour_edges[k3+ii]; |
---|
1298 | stage_edge_values[k3]= max(stage_centroid_values[k]-elevation_centroid_values[k]+elevation_edge_values[k3], stage_edge_values[ktmp]); |
---|
1299 | stage_edge_values[k3+1]= max(stage_centroid_values[k] -elevation_centroid_values[k]+elevation_edge_values[k3+1],stage_edge_values[ktmp]); |
---|
1300 | stage_edge_values[k3+2]= max(stage_centroid_values[k] -elevation_centroid_values[k]+elevation_edge_values[k3+2], stage_edge_values[ktmp]); |
---|
1301 | } |
---|
1302 | |
---|
1303 | // }else{ |
---|
1304 | // |
---|
1305 | // // // This cell is 'dry'. |
---|
1306 | // // // Extrapolate using the neighbouring wet cell if appropriate |
---|
1307 | // // // This needs to preserve a wet-dry interface |
---|
1308 | // //ktmp = 3*ktmp+neighbour_edges[3*k+ii]; |
---|
1309 | // //stage_edge_values[k3]= stage_edge_values[ktmp];//max(stage_edge_values[3*ktmp+neighbour_edges[3*ktmp+i]], elevation_edge_values[k3]) ; |
---|
1310 | // //stage_edge_values[k3+1]= stage_edge_values[ktmp];//max(stage_edge_values[3*ktmp+neighbour_edges[3*ktmp+i]], elevation_edge_values[k3+1]); |
---|
1311 | // //stage_edge_values[k3+2]= stage_edge_values[ktmp];//max(stage_edge_values[3*ktmp+neighbour_edges[3*ktmp +i]], elevation_edge_values[k3+2]); |
---|
1312 | // // stage_edge_values[k3]= stage_centroid_values[ktmp] ; |
---|
1313 | // // stage_edge_values[k3+1]= stage_centroid_values[ktmp]; |
---|
1314 | // // stage_edge_values[k3+2]= stage_centroid_values[ktmp]; |
---|
1315 | // stage_edge_values[k3]= stage_centroid_values[k] ; |
---|
1316 | // stage_edge_values[k3+1]= stage_centroid_values[k]; |
---|
1317 | // stage_edge_values[k3+2]= stage_centroid_values[k]; |
---|
1318 | // } |
---|
1319 | // |
---|
1320 | } |
---|
1321 | // First order momentum / velocity extrapolation |
---|
1322 | //if(stagemin>=bedmax){ |
---|
1323 | // stage_edge_values[k3] = stage_centroid_values[k]; |
---|
1324 | // stage_edge_values[k3+1] = stage_centroid_values[k]; |
---|
1325 | // stage_edge_values[k3+2] = stage_centroid_values[k]; |
---|
1326 | //}else{ |
---|
1327 | // stage_edge_values[k3]= stage_centroid_values[k]-elevation_centroid_values[k]+elevation_edge_values[k3]; |
---|
1328 | // stage_edge_values[k3+1]= stage_centroid_values[k] -elevation_centroid_values[k]+elevation_edge_values[k3+1]; |
---|
1329 | // stage_edge_values[k3+2]= stage_centroid_values[k] -elevation_centroid_values[k]+elevation_edge_values[k3+2]; |
---|
1330 | //} |
---|
1331 | xmom_edge_values[k3] = xmom_centroid_values[k]; |
---|
1332 | xmom_edge_values[k3+1] = xmom_centroid_values[k]; |
---|
1333 | xmom_edge_values[k3+2] = xmom_centroid_values[k]; |
---|
1334 | ymom_edge_values[k3] = ymom_centroid_values[k]; |
---|
1335 | ymom_edge_values[k3+1] = ymom_centroid_values[k]; |
---|
1336 | ymom_edge_values[k3+2] = ymom_centroid_values[k]; |
---|
1337 | |
---|
1338 | continue; |
---|
1339 | } |
---|
1340 | |
---|
1341 | // Calculate heights of neighbouring cells |
---|
1342 | hc = stage_centroid_values[k] - elevation_centroid_values[k]; |
---|
1343 | h0 = stage_centroid_values[k0] - elevation_centroid_values[k0]; |
---|
1344 | h1 = stage_centroid_values[k1] - elevation_centroid_values[k1]; |
---|
1345 | h2 = stage_centroid_values[k2] - elevation_centroid_values[k2]; |
---|
1346 | hmin = min(min(h0, min(h1, h2)), hc); |
---|
1347 | //// GD FIXME: No longer needed? |
---|
1348 | //hfactor = 0.0; |
---|
1349 | ////if (hmin > 0.001) |
---|
1350 | //if (hmin > 0.) |
---|
1351 | ////if (hc>0.0) |
---|
1352 | //{ |
---|
1353 | // hfactor = 1.0 ;//hmin/(hmin + 0.004); |
---|
1354 | //hfactor=hmin/(hmin + 0.004); |
---|
1355 | //} |
---|
1356 | //hfactor= min(2.0*max(hmin,0.0)/max(hc,max(0.5*(bedmax-bedmin),minimum_allowed_height)), 1.0); |
---|
1357 | hfactor= min(2.0*max(hmin,0.0)/max(hc,minimum_allowed_height*0.1), 1.0); |
---|
1358 | |
---|
1359 | //----------------------------------- |
---|
1360 | // stage |
---|
1361 | //----------------------------------- |
---|
1362 | |
---|
1363 | // Calculate the difference between vertex 0 of the auxiliary |
---|
1364 | // triangle and the centroid of triangle k |
---|
1365 | dq0 = stage_centroid_values[k0] - stage_centroid_values[k]; |
---|
1366 | |
---|
1367 | // Calculate differentials between the vertices |
---|
1368 | // of the auxiliary triangle (centroids of neighbouring triangles) |
---|
1369 | dq1 = stage_centroid_values[k1] - stage_centroid_values[k0]; |
---|
1370 | dq2 = stage_centroid_values[k2] - stage_centroid_values[k0]; |
---|
1371 | |
---|
1372 | //if( (area2>0.0) ){ |
---|
1373 | |
---|
1374 | inv_area2 = 1.0/area2; |
---|
1375 | //if(count_wet_neighbours[k] > 1){ |
---|
1376 | //if(1==1){ |
---|
1377 | // // Calculate the gradient of stage on the auxiliary triangle |
---|
1378 | a = dy2*dq1 - dy1*dq2; |
---|
1379 | a *= inv_area2; |
---|
1380 | b = dx1*dq2 - dx2*dq1; |
---|
1381 | b *= inv_area2; |
---|
1382 | //}else{ |
---|
1383 | //// //// Friction slope type extrapolation -- emulating steady flow |
---|
1384 | //// //// d(stage)/dx = - u*sqrt(u**2 + v**2)*n**2/depth**(4/3) |
---|
1385 | // hc=max(stage_centroid_values[k] - elevation_centroid_values[k],0.0); |
---|
1386 | // if(hc>1.0e-06){ |
---|
1387 | // tmp = sqrt(xmom_centroid_values[k]*xmom_centroid_values[k] + |
---|
1388 | // ymom_centroid_values[k]*ymom_centroid_values[k])*0.03*0.03; |
---|
1389 | // tmp /=max(pow(hc,10.0/3.0), 1.0e-30); |
---|
1390 | // }else{ |
---|
1391 | // tmp=0.0; |
---|
1392 | // } |
---|
1393 | // a = -xmom_centroid_values[k]*tmp; |
---|
1394 | // b = -ymom_centroid_values[k]*tmp; |
---|
1395 | //// // Limit gradient to be between the bed slope, and zero |
---|
1396 | //// if(a*a_bs<0.) a=0.; |
---|
1397 | //// if(fabs(a)>fabs(a_bs)) a=a_bs; |
---|
1398 | //// if(b*b_bs<0.) b=0.; |
---|
1399 | //// if(fabs(b)>fabs(b_bs)) b=b_bs; |
---|
1400 | //} |
---|
1401 | // Calculate provisional jumps in stage from the centroid |
---|
1402 | // of triangle k to its vertices, to be limited |
---|
1403 | dqv[0] = a*dxv0 + b*dyv0; |
---|
1404 | dqv[1] = a*dxv1 + b*dyv1; |
---|
1405 | dqv[2] = a*dxv2 + b*dyv2; |
---|
1406 | |
---|
1407 | // Now we want to find min and max of the centroid and the |
---|
1408 | // vertices of the auxiliary triangle and compute jumps |
---|
1409 | // from the centroid to the min and max |
---|
1410 | find_qmin_and_qmax(dq0, dq1, dq2, &qmin, &qmax); |
---|
1411 | |
---|
1412 | beta_tmp = beta_w_dry + (beta_w - beta_w_dry) * hfactor; |
---|
1413 | |
---|
1414 | |
---|
1415 | // Limit the gradient |
---|
1416 | // This is more complex for stage than other quantities |
---|
1417 | //if((count_wet_neighbours[k]>0)&&(cell_wetness_scale[k]=1.0)){//&&(k_wetdry==0)){ |
---|
1418 | //if(stage_centroid_values[k] > max_elevation_edgevalue[k]){ |
---|
1419 | //if( (area2>0) ){ |
---|
1420 | //if(count_wet_neighbours[k]>0){ |
---|
1421 | //if(min_elevation_edgevalue[k]<=stagemin ){ |
---|
1422 | //if(bedmax<=stagemin ){ |
---|
1423 | limit_gradient(dqv, qmin, qmax, beta_tmp); |
---|
1424 | //}else{ |
---|
1425 | // dqv[0]=-elevation_centroid_values[k] + elevation_edge_values[k3+0]; |
---|
1426 | // dqv[1]=-elevation_centroid_values[k] + elevation_edge_values[k3+1]; |
---|
1427 | // dqv[2]=-elevation_centroid_values[k] + elevation_edge_values[k3+2]; |
---|
1428 | //} |
---|
1429 | //printf("%lf \n ", beta_tmp); |
---|
1430 | //} |
---|
1431 | //} |
---|
1432 | stage_edge_values[k3+0] = stage_centroid_values[k] + dqv[0]; |
---|
1433 | stage_edge_values[k3+1] = stage_centroid_values[k] + dqv[1]; |
---|
1434 | stage_edge_values[k3+2] = stage_centroid_values[k] + dqv[2]; |
---|
1435 | // IDEA: extrapolate assuming slope is that of steady flow?? |
---|
1436 | // GD HACK - FIXME |
---|
1437 | // Note that 'near-dry' cells which don't exchange mass with |
---|
1438 | // neighbouring cells have to revert to having a constant stage |
---|
1439 | // extrapolation, or else they will have a residual bed slope term. |
---|
1440 | // This helps! -- But probably makes rainfall-runoff problems worse. |
---|
1441 | //ii = (stage_edge_values[k3+0] > elevation_edge_values[k3+0])+ |
---|
1442 | // (stage_edge_values[k3+1] > elevation_edge_values[k3+1])+ |
---|
1443 | // (stage_edge_values[k3+2] > elevation_edge_values[k3+2]); |
---|
1444 | //if(ii<2){ |
---|
1445 | // stage_edge_values[k3+0] = stage_centroid_values[k] ; |
---|
1446 | // stage_edge_values[k3+1] = stage_centroid_values[k] ; |
---|
1447 | // stage_edge_values[k3+2] = stage_centroid_values[k] ; |
---|
1448 | //} |
---|
1449 | //}else{ |
---|
1450 | // d(stage)/dx = - u*sqrt(u**2 + v**2)*n**2/depth**(4/3) |
---|
1451 | // hc=max(stage_centroid_values[k] - elevation_centroid_values[k],0.0); |
---|
1452 | // tmp = sqrt(xmom_centroid_values[k]*xmom_centroid_values[k] + |
---|
1453 | // ymom_centroid_values[k]*ymom_centroid_values[k])*0.03*0.03; |
---|
1454 | // tmp /=max(hc*hc*hc, 1.0e-09); |
---|
1455 | // a = -xmom_centroid_values[k]*tmp; |
---|
1456 | // b = -ymom_centroid_values[k]*tmp; |
---|
1457 | // dqv[0] = a*dxv0 + b*dyv0; |
---|
1458 | // dqv[1] = a*dxv1 + b*dyv1; |
---|
1459 | // dqv[2] = a*dxv2 + b*dyv2; |
---|
1460 | //////if(count_wet_neighbours[k]==0){ |
---|
1461 | //// //weight=max(cell_wetness_scale[k] - (stage_centroid_values[k]-elevation_centroid_values[k]), 0.); |
---|
1462 | //// //weight/=(max_elevation_edgevalue[k] - elevation_centroid_values[k]); |
---|
1463 | //// //weight=min(weight, 1.0); |
---|
1464 | //// //weight==0; |
---|
1465 | // weight=0.; |
---|
1466 | //// // 'Shallow flow on steep slope' |
---|
1467 | //limit_gradient(dqv, qmin, qmax, beta_tmp); |
---|
1468 | //stage_edge_values[k3+0] =stage_centroid_values[k] + dqv[0]; |
---|
1469 | //stage_edge_values[k3+1] =stage_centroid_values[k] + dqv[1]; |
---|
1470 | //stage_edge_values[k3+2] =stage_centroid_values[k] + dqv[2]; |
---|
1471 | // |
---|
1472 | //// // There exists a neighbouring bed cell with elevation > minimum |
---|
1473 | //// // neighbouring stage value |
---|
1474 | |
---|
1475 | //// // We have to be careful in this situation. Limiting the stage gradient can |
---|
1476 | //// // cause problems for shallow flows down steep slopes (rainfall-runoff type problems) |
---|
1477 | //// // Previously 'balance_deep_and_shallow' was used to deal with this issue |
---|
1478 | // for(i=0; i<3; i++){ |
---|
1479 | // stage_edge_values[k3+i] = weight*stage_edge_values[k3+i] + |
---|
1480 | // (1.0-weight)*(stage_centroid_values[k] -elevation_centroid_values[k] |
---|
1481 | // +elevation_edge_values[k3+i]); |
---|
1482 | // } |
---|
1483 | //} |
---|
1484 | |
---|
1485 | //----------------------------------- |
---|
1486 | // xmomentum |
---|
1487 | //----------------------------------- |
---|
1488 | |
---|
1489 | // Calculate the difference between vertex 0 of the auxiliary |
---|
1490 | // triangle and the centroid of triangle k |
---|
1491 | dq0 = xmom_centroid_values[k0] - xmom_centroid_values[k]; |
---|
1492 | |
---|
1493 | // Calculate differentials between the vertices |
---|
1494 | // of the auxiliary triangle |
---|
1495 | dq1 = xmom_centroid_values[k1] - xmom_centroid_values[k0]; |
---|
1496 | dq2 = xmom_centroid_values[k2] - xmom_centroid_values[k0]; |
---|
1497 | |
---|
1498 | // Calculate the gradient of xmom on the auxiliary triangle |
---|
1499 | a = dy2*dq1 - dy1*dq2; |
---|
1500 | a *= inv_area2; |
---|
1501 | b = dx1*dq2 - dx2*dq1; |
---|
1502 | b *= inv_area2; |
---|
1503 | |
---|
1504 | // Calculate provisional jumps in stage from the centroid |
---|
1505 | // of triangle k to its vertices, to be limited |
---|
1506 | dqv[0] = a*dxv0+b*dyv0; |
---|
1507 | dqv[1] = a*dxv1+b*dyv1; |
---|
1508 | dqv[2] = a*dxv2+b*dyv2; |
---|
1509 | |
---|
1510 | // Now we want to find min and max of the centroid and the |
---|
1511 | // vertices of the auxiliary triangle and compute jumps |
---|
1512 | // from the centroid to the min and max |
---|
1513 | // |
---|
1514 | find_qmin_and_qmax(dq0, dq1, dq2, &qmin, &qmax); |
---|
1515 | |
---|
1516 | beta_tmp = beta_uh_dry + (beta_uh - beta_uh_dry) * hfactor; |
---|
1517 | |
---|
1518 | // Limit the gradient |
---|
1519 | //if((k!=k0)&(k!=k1)&(k!=k2)) |
---|
1520 | //if(stagemin>=bedmax){ |
---|
1521 | //if((count_wet_neighbours[k]>0)){ // && |
---|
1522 | // (cell_wetness_scale[k]==1.0)){ |
---|
1523 | //if(stage_centroid_values[k]>(minimum_allowed_height+max_elevation_edgevalue[k])){ |
---|
1524 | |
---|
1525 | limit_gradient(dqv, qmin, qmax, beta_tmp); |
---|
1526 | //}else{ |
---|
1527 | // dqv[0]=0.; |
---|
1528 | // dqv[1]=0.; |
---|
1529 | // dqv[2]=0.; |
---|
1530 | //// limit_gradient(dqv, qmin, qmax, 0.); |
---|
1531 | //} |
---|
1532 | //limit_gradient2(dqv, qmin, qmax, beta_tmp,r0scale); |
---|
1533 | |
---|
1534 | |
---|
1535 | for (i=0; i < 3; i++) |
---|
1536 | { |
---|
1537 | xmom_edge_values[k3+i] = xmom_centroid_values[k] + dqv[i]; |
---|
1538 | } |
---|
1539 | |
---|
1540 | //----------------------------------- |
---|
1541 | // ymomentum |
---|
1542 | //----------------------------------- |
---|
1543 | |
---|
1544 | // Calculate the difference between vertex 0 of the auxiliary |
---|
1545 | // triangle and the centroid of triangle k |
---|
1546 | dq0 = ymom_centroid_values[k0] - ymom_centroid_values[k]; |
---|
1547 | |
---|
1548 | // Calculate differentials between the vertices |
---|
1549 | // of the auxiliary triangle |
---|
1550 | dq1 = ymom_centroid_values[k1] - ymom_centroid_values[k0]; |
---|
1551 | dq2 = ymom_centroid_values[k2] - ymom_centroid_values[k0]; |
---|
1552 | |
---|
1553 | // Calculate the gradient of xmom on the auxiliary triangle |
---|
1554 | a = dy2*dq1 - dy1*dq2; |
---|
1555 | a *= inv_area2; |
---|
1556 | b = dx1*dq2 - dx2*dq1; |
---|
1557 | b *= inv_area2; |
---|
1558 | |
---|
1559 | // Calculate provisional jumps in stage from the centroid |
---|
1560 | // of triangle k to its vertices, to be limited |
---|
1561 | dqv[0] = a*dxv0 + b*dyv0; |
---|
1562 | dqv[1] = a*dxv1 + b*dyv1; |
---|
1563 | dqv[2] = a*dxv2 + b*dyv2; |
---|
1564 | |
---|
1565 | // Now we want to find min and max of the centroid and the |
---|
1566 | // vertices of the auxiliary triangle and compute jumps |
---|
1567 | // from the centroid to the min and max |
---|
1568 | // |
---|
1569 | find_qmin_and_qmax(dq0, dq1, dq2, &qmin, &qmax); |
---|
1570 | |
---|
1571 | beta_tmp = beta_vh_dry + (beta_vh - beta_vh_dry) * hfactor; |
---|
1572 | |
---|
1573 | // Limit the gradient |
---|
1574 | //if(stagemin>=bedmax){ |
---|
1575 | //if((count_wet_neighbours[k]>0)){//&& |
---|
1576 | //(cell_wetness_scale[k]==1.0)){ |
---|
1577 | //(stage_centroid_values[k]>(minimum_allowed_height+elevation_centroid_values[k]))){ |
---|
1578 | //if(stage_centroid_values[k]>(minimum_allowed_height+max_elevation_edgevalue[k])){ |
---|
1579 | limit_gradient(dqv, qmin, qmax, beta_tmp); |
---|
1580 | //}else{ |
---|
1581 | // dqv[0]=0.; |
---|
1582 | // dqv[1]=0.; |
---|
1583 | // dqv[2]=0.; |
---|
1584 | //} |
---|
1585 | |
---|
1586 | for (i=0;i<3;i++) |
---|
1587 | { |
---|
1588 | ymom_edge_values[k3 + i] = ymom_centroid_values[k] + dqv[i]; |
---|
1589 | } |
---|
1590 | |
---|
1591 | } // End number_of_boundaries <=1 |
---|
1592 | else |
---|
1593 | { |
---|
1594 | |
---|
1595 | //============================================== |
---|
1596 | // Number of boundaries == 2 |
---|
1597 | //============================================== |
---|
1598 | |
---|
1599 | // One internal neighbour and gradient is in direction of the neighbour's centroid |
---|
1600 | |
---|
1601 | // Find the only internal neighbour (k1?) |
---|
1602 | for (k2 = k3; k2 < k3 + 3; k2++) |
---|
1603 | { |
---|
1604 | // Find internal neighbour of triangle k |
---|
1605 | // k2 indexes the edges of triangle k |
---|
1606 | |
---|
1607 | if (surrogate_neighbours[k2] != k) |
---|
1608 | { |
---|
1609 | break; |
---|
1610 | } |
---|
1611 | } |
---|
1612 | |
---|
1613 | if ((k2 == k3 + 3)) |
---|
1614 | { |
---|
1615 | // If we didn't find an internal neighbour |
---|
1616 | report_python_error(AT, "Internal neighbour not found"); |
---|
1617 | return -1; |
---|
1618 | } |
---|
1619 | |
---|
1620 | k1 = surrogate_neighbours[k2]; |
---|
1621 | |
---|
1622 | // The coordinates of the triangle are already (x,y). |
---|
1623 | // Get centroid of the neighbour (x1,y1) |
---|
1624 | coord_index = 2*k1; |
---|
1625 | x1 = centroid_coordinates[coord_index]; |
---|
1626 | y1 = centroid_coordinates[coord_index + 1]; |
---|
1627 | |
---|
1628 | // Compute x- and y- distances between the centroid of |
---|
1629 | // triangle k and that of its neighbour |
---|
1630 | dx1 = x1 - x; |
---|
1631 | dy1 = y1 - y; |
---|
1632 | |
---|
1633 | // Set area2 as the square of the distance |
---|
1634 | area2 = dx1*dx1 + dy1*dy1; |
---|
1635 | |
---|
1636 | // Set dx2=(x1-x0)/((x1-x0)^2+(y1-y0)^2) |
---|
1637 | // and dy2=(y1-y0)/((x1-x0)^2+(y1-y0)^2) which |
---|
1638 | // respectively correspond to the x- and y- gradients |
---|
1639 | // of the conserved quantities |
---|
1640 | dx2 = 1.0/area2; |
---|
1641 | dy2 = dx2*dy1; |
---|
1642 | dx2 *= dx1; |
---|
1643 | |
---|
1644 | |
---|
1645 | //----------------------------------- |
---|
1646 | // stage |
---|
1647 | //----------------------------------- |
---|
1648 | |
---|
1649 | // Compute differentials |
---|
1650 | dq1 = stage_centroid_values[k1] - stage_centroid_values[k]; |
---|
1651 | |
---|
1652 | // Calculate the gradient between the centroid of triangle k |
---|
1653 | // and that of its neighbour |
---|
1654 | a = dq1*dx2; |
---|
1655 | b = dq1*dy2; |
---|
1656 | |
---|
1657 | // Calculate provisional edge jumps, to be limited |
---|
1658 | dqv[0] = a*dxv0 + b*dyv0; |
---|
1659 | dqv[1] = a*dxv1 + b*dyv1; |
---|
1660 | dqv[2] = a*dxv2 + b*dyv2; |
---|
1661 | |
---|
1662 | // Now limit the jumps |
---|
1663 | if (dq1>=0.0) |
---|
1664 | { |
---|
1665 | qmin=0.0; |
---|
1666 | qmax=dq1; |
---|
1667 | } |
---|
1668 | else |
---|
1669 | { |
---|
1670 | qmin = dq1; |
---|
1671 | qmax = 0.0; |
---|
1672 | } |
---|
1673 | |
---|
1674 | // Limit the gradient |
---|
1675 | limit_gradient(dqv, qmin, qmax, beta_w); |
---|
1676 | |
---|
1677 | //for (i=0; i < 3; i++) |
---|
1678 | //{ |
---|
1679 | stage_edge_values[k3] = stage_centroid_values[k] + dqv[0]; |
---|
1680 | stage_edge_values[k3 + 1] = stage_centroid_values[k] + dqv[1]; |
---|
1681 | stage_edge_values[k3 + 2] = stage_centroid_values[k] + dqv[2]; |
---|
1682 | //} |
---|
1683 | |
---|
1684 | //----------------------------------- |
---|
1685 | // xmomentum |
---|
1686 | //----------------------------------- |
---|
1687 | |
---|
1688 | // Compute differentials |
---|
1689 | dq1 = xmom_centroid_values[k1] - xmom_centroid_values[k]; |
---|
1690 | |
---|
1691 | // Calculate the gradient between the centroid of triangle k |
---|
1692 | // and that of its neighbour |
---|
1693 | a = dq1*dx2; |
---|
1694 | b = dq1*dy2; |
---|
1695 | |
---|
1696 | // Calculate provisional edge jumps, to be limited |
---|
1697 | dqv[0] = a*dxv0+b*dyv0; |
---|
1698 | dqv[1] = a*dxv1+b*dyv1; |
---|
1699 | dqv[2] = a*dxv2+b*dyv2; |
---|
1700 | |
---|
1701 | // Now limit the jumps |
---|
1702 | if (dq1 >= 0.0) |
---|
1703 | { |
---|
1704 | qmin = 0.0; |
---|
1705 | qmax = dq1; |
---|
1706 | } |
---|
1707 | else |
---|
1708 | { |
---|
1709 | qmin = dq1; |
---|
1710 | qmax = 0.0; |
---|
1711 | } |
---|
1712 | |
---|
1713 | // Limit the gradient |
---|
1714 | limit_gradient(dqv, qmin, qmax, beta_w); |
---|
1715 | |
---|
1716 | //for (i=0;i<3;i++) |
---|
1717 | //xmom_edge_values[k3] = xmom_centroid_values[k] + dqv[0]; |
---|
1718 | //xmom_edge_values[k3 + 1] = xmom_centroid_values[k] + dqv[1]; |
---|
1719 | //xmom_edge_values[k3 + 2] = xmom_centroid_values[k] + dqv[2]; |
---|
1720 | |
---|
1721 | for (i = 0; i < 3;i++) |
---|
1722 | { |
---|
1723 | xmom_edge_values[k3 + i] = xmom_centroid_values[k] + dqv[i]; |
---|
1724 | } |
---|
1725 | |
---|
1726 | //----------------------------------- |
---|
1727 | // ymomentum |
---|
1728 | //----------------------------------- |
---|
1729 | |
---|
1730 | // Compute differentials |
---|
1731 | dq1 = ymom_centroid_values[k1] - ymom_centroid_values[k]; |
---|
1732 | |
---|
1733 | // Calculate the gradient between the centroid of triangle k |
---|
1734 | // and that of its neighbour |
---|
1735 | a = dq1*dx2; |
---|
1736 | b = dq1*dy2; |
---|
1737 | |
---|
1738 | // Calculate provisional edge jumps, to be limited |
---|
1739 | dqv[0] = a*dxv0 + b*dyv0; |
---|
1740 | dqv[1] = a*dxv1 + b*dyv1; |
---|
1741 | dqv[2] = a*dxv2 + b*dyv2; |
---|
1742 | |
---|
1743 | // Now limit the jumps |
---|
1744 | if (dq1>=0.0) |
---|
1745 | { |
---|
1746 | qmin = 0.0; |
---|
1747 | qmax = dq1; |
---|
1748 | } |
---|
1749 | else |
---|
1750 | { |
---|
1751 | qmin = dq1; |
---|
1752 | qmax = 0.0; |
---|
1753 | } |
---|
1754 | |
---|
1755 | // Limit the gradient |
---|
1756 | limit_gradient(dqv, qmin, qmax, beta_w); |
---|
1757 | |
---|
1758 | for (i=0;i<3;i++) |
---|
1759 | { |
---|
1760 | ymom_edge_values[k3 + i] = ymom_centroid_values[k] + dqv[i]; |
---|
1761 | } |
---|
1762 | } // else [number_of_boundaries==2] |
---|
1763 | } // for k=0 to number_of_elements-1 |
---|
1764 | } |
---|
1765 | |
---|
1766 | //for(k=0;k<number_of_elements; k++){ |
---|
1767 | // // Hack for 'dry' cells |
---|
1768 | // // Make sure edge value is not greater than neighbour edge value |
---|
1769 | // //if(stage_centroid_values[k] - elevation_centroid_values[k] < minimum_allowed_height+epsilon){ |
---|
1770 | // if(cell_wetness_scale[k]==0.0){ |
---|
1771 | // for(i=0; i<3;i++){ |
---|
1772 | // if(surrogate_neighbours[3*k+i] >= 0){ |
---|
1773 | // ktmp=3*surrogate_neighbours[3*k+i] + neighbour_edges[3*k+i]; |
---|
1774 | // //if(cell_wetness_scale[surrogate_neighbours[3*k+i]]>0.){ |
---|
1775 | // stage_edge_values[3*k+i] = min(stage_edge_values[3*k+i], stage_edge_values[ktmp]); |
---|
1776 | // } |
---|
1777 | // } |
---|
1778 | // } |
---|
1779 | //} |
---|
1780 | |
---|
1781 | // Compute vertex values of quantities |
---|
1782 | for (k=0; k<number_of_elements; k++){ |
---|
1783 | k3=3*k; |
---|
1784 | |
---|
1785 | // Compute stage vertex values |
---|
1786 | stage_vertex_values[k3] = stage_edge_values[k3+1] + stage_edge_values[k3+2] -stage_edge_values[k3] ; |
---|
1787 | stage_vertex_values[k3+1] = stage_edge_values[k3] + stage_edge_values[k3+2]-stage_edge_values[k3+1]; |
---|
1788 | stage_vertex_values[k3+2] = stage_edge_values[k3] + stage_edge_values[k3+1]-stage_edge_values[k3+2]; |
---|
1789 | |
---|
1790 | // Compute xmom vertex values |
---|
1791 | xmom_vertex_values[k3] = xmom_edge_values[k3+1] + xmom_edge_values[k3+2] -xmom_edge_values[k3] ; |
---|
1792 | xmom_vertex_values[k3+1] = xmom_edge_values[k3] + xmom_edge_values[k3+2]-xmom_edge_values[k3+1]; |
---|
1793 | xmom_vertex_values[k3+2] = xmom_edge_values[k3] + xmom_edge_values[k3+1]-xmom_edge_values[k3+2]; |
---|
1794 | |
---|
1795 | // Compute ymom vertex values |
---|
1796 | ymom_vertex_values[k3] = ymom_edge_values[k3+1] + ymom_edge_values[k3+2] -ymom_edge_values[k3] ; |
---|
1797 | ymom_vertex_values[k3+1] = ymom_edge_values[k3] + ymom_edge_values[k3+2]-ymom_edge_values[k3+1]; |
---|
1798 | ymom_vertex_values[k3+2] = ymom_edge_values[k3] + ymom_edge_values[k3+1]-ymom_edge_values[k3+2]; |
---|
1799 | |
---|
1800 | // If needed, convert from velocity to momenta |
---|
1801 | if(extrapolate_velocity_second_order==1){ |
---|
1802 | //Convert velocity back to momenta at centroids |
---|
1803 | xmom_centroid_values[k] = xmom_centroid_store[k]; |
---|
1804 | ymom_centroid_values[k] = ymom_centroid_store[k]; |
---|
1805 | |
---|
1806 | // Re-compute momenta at edges |
---|
1807 | for (i=0; i<3; i++){ |
---|
1808 | de[i] = max(stage_edge_values[k3+i]-elevation_edge_values[k3+i],0.0); |
---|
1809 | //if(de[i]<minimum_allowed_height){ |
---|
1810 | // de[i]=0.; |
---|
1811 | //} |
---|
1812 | xmom_edge_values[k3+i]=xmom_edge_values[k3+i]*de[i]; |
---|
1813 | ymom_edge_values[k3+i]=ymom_edge_values[k3+i]*de[i]; |
---|
1814 | } |
---|
1815 | |
---|
1816 | // Re-compute momenta at vertices |
---|
1817 | for (i=0; i<3; i++){ |
---|
1818 | de[i] = max(stage_vertex_values[k3+i]-elevation_vertex_values[k3+i],0.0); |
---|
1819 | xmom_vertex_values[k3+i]=xmom_vertex_values[k3+i]*de[i]; |
---|
1820 | ymom_vertex_values[k3+i]=ymom_vertex_values[k3+i]*de[i]; |
---|
1821 | } |
---|
1822 | |
---|
1823 | } |
---|
1824 | |
---|
1825 | |
---|
1826 | } |
---|
1827 | |
---|
1828 | free(xmom_centroid_store); |
---|
1829 | free(ymom_centroid_store); |
---|
1830 | free(stage_centroid_store); |
---|
1831 | free(min_elevation_edgevalue); |
---|
1832 | free(max_elevation_edgevalue); |
---|
1833 | free(cell_wetness_scale); |
---|
1834 | free(count_wet_neighbours); |
---|
1835 | |
---|
1836 | return 0; |
---|
1837 | } |
---|
1838 | |
---|
1839 | //========================================================================= |
---|
1840 | // Python Glue |
---|
1841 | //========================================================================= |
---|
1842 | |
---|
1843 | |
---|
1844 | //======================================================================== |
---|
1845 | // Compute fluxes |
---|
1846 | //======================================================================== |
---|
1847 | |
---|
1848 | // Modified central flux function |
---|
1849 | |
---|
1850 | PyObject *compute_fluxes_ext_central(PyObject *self, PyObject *args) { |
---|
1851 | /*Compute all fluxes and the timestep suitable for all volumes |
---|
1852 | in domain. |
---|
1853 | |
---|
1854 | Compute total flux for each conserved quantity using "flux_function_central" |
---|
1855 | |
---|
1856 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
1857 | Resulting flux is then scaled by area and stored in |
---|
1858 | explicit_update for each of the three conserved quantities |
---|
1859 | stage, xmomentum and ymomentum |
---|
1860 | |
---|
1861 | The maximal allowable speed computed by the flux_function for each volume |
---|
1862 | is converted to a timestep that must not be exceeded. The minimum of |
---|
1863 | those is computed as the next overall timestep. |
---|
1864 | |
---|
1865 | Python call: |
---|
1866 | domain.timestep = compute_fluxes(timestep, |
---|
1867 | domain.epsilon, |
---|
1868 | domain.H0, |
---|
1869 | domain.g, |
---|
1870 | domain.neighbours, |
---|
1871 | domain.neighbour_edges, |
---|
1872 | domain.normals, |
---|
1873 | domain.edgelengths, |
---|
1874 | domain.radii, |
---|
1875 | domain.areas, |
---|
1876 | tri_full_flag, |
---|
1877 | Stage.edge_values, |
---|
1878 | Xmom.edge_values, |
---|
1879 | Ymom.edge_values, |
---|
1880 | Bed.edge_values, |
---|
1881 | Stage.boundary_values, |
---|
1882 | Xmom.boundary_values, |
---|
1883 | Ymom.boundary_values, |
---|
1884 | Stage.explicit_update, |
---|
1885 | Xmom.explicit_update, |
---|
1886 | Ymom.explicit_update, |
---|
1887 | already_computed_flux, |
---|
1888 | optimise_dry_cells, |
---|
1889 | stage.centroid_values, |
---|
1890 | bed.centroid_values) |
---|
1891 | |
---|
1892 | |
---|
1893 | Post conditions: |
---|
1894 | domain.explicit_update is reset to computed flux values |
---|
1895 | domain.timestep is set to the largest step satisfying all volumes. |
---|
1896 | |
---|
1897 | |
---|
1898 | */ |
---|
1899 | |
---|
1900 | |
---|
1901 | PyArrayObject *boundary_flux_sum, *neighbours, *neighbour_edges, |
---|
1902 | *normals, *edgelengths, *radii, *areas, |
---|
1903 | *tri_full_flag, |
---|
1904 | *stage_edge_values, |
---|
1905 | *xmom_edge_values, |
---|
1906 | *ymom_edge_values, |
---|
1907 | *bed_edge_values, |
---|
1908 | *stage_boundary_values, |
---|
1909 | *xmom_boundary_values, |
---|
1910 | *ymom_boundary_values, |
---|
1911 | *boundary_flux_type, |
---|
1912 | *stage_explicit_update, |
---|
1913 | *xmom_explicit_update, |
---|
1914 | *ymom_explicit_update, |
---|
1915 | *already_computed_flux, //Tracks whether the flux across an edge has already been computed |
---|
1916 | *max_speed_array, //Keeps track of max speeds for each triangle |
---|
1917 | *stage_centroid_values, |
---|
1918 | *xmom_centroid_values, |
---|
1919 | *ymom_centroid_values, |
---|
1920 | *bed_centroid_values, |
---|
1921 | *bed_vertex_values; |
---|
1922 | |
---|
1923 | double timestep, epsilon, H0, g; |
---|
1924 | int optimise_dry_cells, timestep_order; |
---|
1925 | |
---|
1926 | // Convert Python arguments to C |
---|
1927 | if (!PyArg_ParseTuple(args, "ddddOOOOOOOOOOOOOOOOOOOOOiiOOOOO", |
---|
1928 | ×tep, |
---|
1929 | &epsilon, |
---|
1930 | &H0, |
---|
1931 | &g, |
---|
1932 | &boundary_flux_sum, |
---|
1933 | &neighbours, |
---|
1934 | &neighbour_edges, |
---|
1935 | &normals, |
---|
1936 | &edgelengths, &radii, &areas, |
---|
1937 | &tri_full_flag, |
---|
1938 | &stage_edge_values, |
---|
1939 | &xmom_edge_values, |
---|
1940 | &ymom_edge_values, |
---|
1941 | &bed_edge_values, |
---|
1942 | &stage_boundary_values, |
---|
1943 | &xmom_boundary_values, |
---|
1944 | &ymom_boundary_values, |
---|
1945 | &boundary_flux_type, |
---|
1946 | &stage_explicit_update, |
---|
1947 | &xmom_explicit_update, |
---|
1948 | &ymom_explicit_update, |
---|
1949 | &already_computed_flux, |
---|
1950 | &max_speed_array, |
---|
1951 | &optimise_dry_cells, |
---|
1952 | ×tep_order, |
---|
1953 | &stage_centroid_values, |
---|
1954 | &xmom_centroid_values, |
---|
1955 | &ymom_centroid_values, |
---|
1956 | &bed_centroid_values, |
---|
1957 | &bed_vertex_values)) { |
---|
1958 | report_python_error(AT, "could not parse input arguments"); |
---|
1959 | return NULL; |
---|
1960 | } |
---|
1961 | |
---|
1962 | // check that numpy array objects arrays are C contiguous memory |
---|
1963 | CHECK_C_CONTIG(neighbours); |
---|
1964 | CHECK_C_CONTIG(neighbour_edges); |
---|
1965 | CHECK_C_CONTIG(normals); |
---|
1966 | CHECK_C_CONTIG(edgelengths); |
---|
1967 | CHECK_C_CONTIG(radii); |
---|
1968 | CHECK_C_CONTIG(areas); |
---|
1969 | CHECK_C_CONTIG(tri_full_flag); |
---|
1970 | CHECK_C_CONTIG(stage_edge_values); |
---|
1971 | CHECK_C_CONTIG(xmom_edge_values); |
---|
1972 | CHECK_C_CONTIG(ymom_edge_values); |
---|
1973 | CHECK_C_CONTIG(bed_edge_values); |
---|
1974 | CHECK_C_CONTIG(stage_boundary_values); |
---|
1975 | CHECK_C_CONTIG(xmom_boundary_values); |
---|
1976 | CHECK_C_CONTIG(ymom_boundary_values); |
---|
1977 | CHECK_C_CONTIG(boundary_flux_type); |
---|
1978 | CHECK_C_CONTIG(stage_explicit_update); |
---|
1979 | CHECK_C_CONTIG(xmom_explicit_update); |
---|
1980 | CHECK_C_CONTIG(ymom_explicit_update); |
---|
1981 | CHECK_C_CONTIG(already_computed_flux); |
---|
1982 | CHECK_C_CONTIG(max_speed_array); |
---|
1983 | CHECK_C_CONTIG(stage_centroid_values); |
---|
1984 | CHECK_C_CONTIG(xmom_centroid_values); |
---|
1985 | CHECK_C_CONTIG(ymom_centroid_values); |
---|
1986 | CHECK_C_CONTIG(bed_centroid_values); |
---|
1987 | CHECK_C_CONTIG(bed_vertex_values); |
---|
1988 | |
---|
1989 | int number_of_elements = stage_edge_values -> dimensions[0]; |
---|
1990 | |
---|
1991 | // Call underlying flux computation routine and update |
---|
1992 | // the explicit update arrays |
---|
1993 | timestep = _compute_fluxes_central(number_of_elements, |
---|
1994 | timestep, |
---|
1995 | epsilon, |
---|
1996 | H0, |
---|
1997 | g, |
---|
1998 | (double*) boundary_flux_sum -> data, |
---|
1999 | (long*) neighbours -> data, |
---|
2000 | (long*) neighbour_edges -> data, |
---|
2001 | (double*) normals -> data, |
---|
2002 | (double*) edgelengths -> data, |
---|
2003 | (double*) radii -> data, |
---|
2004 | (double*) areas -> data, |
---|
2005 | (long*) tri_full_flag -> data, |
---|
2006 | (double*) stage_edge_values -> data, |
---|
2007 | (double*) xmom_edge_values -> data, |
---|
2008 | (double*) ymom_edge_values -> data, |
---|
2009 | (double*) bed_edge_values -> data, |
---|
2010 | (double*) stage_boundary_values -> data, |
---|
2011 | (double*) xmom_boundary_values -> data, |
---|
2012 | (double*) ymom_boundary_values -> data, |
---|
2013 | (long*) boundary_flux_type -> data, |
---|
2014 | (double*) stage_explicit_update -> data, |
---|
2015 | (double*) xmom_explicit_update -> data, |
---|
2016 | (double*) ymom_explicit_update -> data, |
---|
2017 | (long*) already_computed_flux -> data, |
---|
2018 | (double*) max_speed_array -> data, |
---|
2019 | optimise_dry_cells, |
---|
2020 | timestep_order, |
---|
2021 | (double*) stage_centroid_values -> data, |
---|
2022 | (double*) xmom_centroid_values -> data, |
---|
2023 | (double*) ymom_centroid_values -> data, |
---|
2024 | (double*) bed_centroid_values -> data, |
---|
2025 | (double*) bed_vertex_values -> data); |
---|
2026 | |
---|
2027 | // Return updated flux timestep |
---|
2028 | return Py_BuildValue("d", timestep); |
---|
2029 | } |
---|
2030 | |
---|
2031 | |
---|
2032 | PyObject *flux_function_central(PyObject *self, PyObject *args) { |
---|
2033 | // |
---|
2034 | // Gateway to innermost flux function. |
---|
2035 | // This is only used by the unit tests as the c implementation is |
---|
2036 | // normally called by compute_fluxes in this module. |
---|
2037 | |
---|
2038 | |
---|
2039 | PyArrayObject *normal, *ql, *qr, *edgeflux; |
---|
2040 | double g, epsilon, max_speed, H0, zl, zr; |
---|
2041 | double h0, limiting_threshold, pressure_flux, smooth; |
---|
2042 | |
---|
2043 | if (!PyArg_ParseTuple(args, "OOOddOddd", |
---|
2044 | &normal, &ql, &qr, &zl, &zr, &edgeflux, |
---|
2045 | &epsilon, &g, &H0)) { |
---|
2046 | report_python_error(AT, "could not parse input arguments"); |
---|
2047 | return NULL; |
---|
2048 | } |
---|
2049 | |
---|
2050 | |
---|
2051 | h0 = H0; |
---|
2052 | limiting_threshold = 10*H0; // Avoid applying limiter below this |
---|
2053 | // threshold for performance reasons. |
---|
2054 | // See ANUGA manual under flux limiting |
---|
2055 | |
---|
2056 | pressure_flux = 0.0; // Store the water pressure related component of the flux |
---|
2057 | smooth = 1.0 ; // term to scale diffusion in riemann solver |
---|
2058 | |
---|
2059 | _flux_function_central((double*) ql -> data, |
---|
2060 | (double*) qr -> data, |
---|
2061 | zl, |
---|
2062 | zr, |
---|
2063 | ((double*) normal -> data)[0], |
---|
2064 | ((double*) normal -> data)[1], |
---|
2065 | epsilon, h0, limiting_threshold, |
---|
2066 | g, |
---|
2067 | (double*) edgeflux -> data, |
---|
2068 | &max_speed, |
---|
2069 | &pressure_flux, |
---|
2070 | ((double*) normal -> data)[0], |
---|
2071 | ((double*) normal -> data)[1], |
---|
2072 | ((double*) normal -> data)[1], |
---|
2073 | smooth |
---|
2074 | ); |
---|
2075 | |
---|
2076 | return Py_BuildValue("d", max_speed); |
---|
2077 | } |
---|
2078 | |
---|
2079 | //======================================================================== |
---|
2080 | // Gravity |
---|
2081 | //======================================================================== |
---|
2082 | |
---|
2083 | PyObject *gravity(PyObject *self, PyObject *args) { |
---|
2084 | // |
---|
2085 | // gravity(g, h, v, x, xmom, ymom) |
---|
2086 | // |
---|
2087 | |
---|
2088 | |
---|
2089 | PyArrayObject *h, *v, *x, *xmom, *ymom; |
---|
2090 | int k, N, k3, k6; |
---|
2091 | double g, avg_h, zx, zy; |
---|
2092 | double x0, y0, x1, y1, x2, y2, z0, z1, z2; |
---|
2093 | //double epsilon; |
---|
2094 | |
---|
2095 | if (!PyArg_ParseTuple(args, "dOOOOO", |
---|
2096 | &g, &h, &v, &x, |
---|
2097 | &xmom, &ymom)) { |
---|
2098 | //&epsilon)) { |
---|
2099 | PyErr_SetString(PyExc_RuntimeError, "shallow_water_ext.c: gravity could not parse input arguments"); |
---|
2100 | return NULL; |
---|
2101 | } |
---|
2102 | |
---|
2103 | // check that numpy array objects arrays are C contiguous memory |
---|
2104 | CHECK_C_CONTIG(h); |
---|
2105 | CHECK_C_CONTIG(v); |
---|
2106 | CHECK_C_CONTIG(x); |
---|
2107 | CHECK_C_CONTIG(xmom); |
---|
2108 | CHECK_C_CONTIG(ymom); |
---|
2109 | |
---|
2110 | N = h -> dimensions[0]; |
---|
2111 | for (k=0; k<N; k++) { |
---|
2112 | k3 = 3*k; // base index |
---|
2113 | |
---|
2114 | // Get bathymetry |
---|
2115 | z0 = ((double*) v -> data)[k3 + 0]; |
---|
2116 | z1 = ((double*) v -> data)[k3 + 1]; |
---|
2117 | z2 = ((double*) v -> data)[k3 + 2]; |
---|
2118 | |
---|
2119 | // Optimise for flat bed |
---|
2120 | // Note (Ole): This didn't produce measurable speed up. |
---|
2121 | // Revisit later |
---|
2122 | //if (fabs(z0-z1)<epsilon && fabs(z1-z2)<epsilon) { |
---|
2123 | // continue; |
---|
2124 | //} |
---|
2125 | |
---|
2126 | // Get average depth from centroid values |
---|
2127 | avg_h = ((double *) h -> data)[k]; |
---|
2128 | |
---|
2129 | // Compute bed slope |
---|
2130 | k6 = 6*k; // base index |
---|
2131 | |
---|
2132 | x0 = ((double*) x -> data)[k6 + 0]; |
---|
2133 | y0 = ((double*) x -> data)[k6 + 1]; |
---|
2134 | x1 = ((double*) x -> data)[k6 + 2]; |
---|
2135 | y1 = ((double*) x -> data)[k6 + 3]; |
---|
2136 | x2 = ((double*) x -> data)[k6 + 4]; |
---|
2137 | y2 = ((double*) x -> data)[k6 + 5]; |
---|
2138 | |
---|
2139 | |
---|
2140 | _gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2, &zx, &zy); |
---|
2141 | |
---|
2142 | // Update momentum |
---|
2143 | ((double*) xmom -> data)[k] += -g*zx*avg_h; |
---|
2144 | ((double*) ymom -> data)[k] += -g*zy*avg_h; |
---|
2145 | } |
---|
2146 | |
---|
2147 | return Py_BuildValue(""); |
---|
2148 | } |
---|
2149 | |
---|
2150 | |
---|
2151 | PyObject *extrapolate_second_order_edge_sw(PyObject *self, PyObject *args) { |
---|
2152 | /*Compute the edge values based on a linear reconstruction |
---|
2153 | on each triangle |
---|
2154 | |
---|
2155 | Python call: |
---|
2156 | extrapolate_second_order_sw(domain.surrogate_neighbours, |
---|
2157 | domain.number_of_boundaries |
---|
2158 | domain.centroid_coordinates, |
---|
2159 | Stage.centroid_values |
---|
2160 | Xmom.centroid_values |
---|
2161 | Ymom.centroid_values |
---|
2162 | domain.edge_coordinates, |
---|
2163 | Stage.edge_values, |
---|
2164 | Xmom.edge_values, |
---|
2165 | Ymom.edge_values) |
---|
2166 | |
---|
2167 | Post conditions: |
---|
2168 | The edges of each triangle have values from a |
---|
2169 | limited linear reconstruction |
---|
2170 | based on centroid values |
---|
2171 | |
---|
2172 | */ |
---|
2173 | PyArrayObject *surrogate_neighbours, |
---|
2174 | *neighbour_edges, |
---|
2175 | *number_of_boundaries, |
---|
2176 | *centroid_coordinates, |
---|
2177 | *stage_centroid_values, |
---|
2178 | *xmom_centroid_values, |
---|
2179 | *ymom_centroid_values, |
---|
2180 | *elevation_centroid_values, |
---|
2181 | *edge_coordinates, |
---|
2182 | *stage_edge_values, |
---|
2183 | *xmom_edge_values, |
---|
2184 | *ymom_edge_values, |
---|
2185 | *elevation_edge_values, |
---|
2186 | *stage_vertex_values, |
---|
2187 | *xmom_vertex_values, |
---|
2188 | *ymom_vertex_values, |
---|
2189 | *elevation_vertex_values; |
---|
2190 | |
---|
2191 | PyObject *domain; |
---|
2192 | |
---|
2193 | |
---|
2194 | double beta_w, beta_w_dry, beta_uh, beta_uh_dry, beta_vh, beta_vh_dry; |
---|
2195 | double minimum_allowed_height, epsilon; |
---|
2196 | int optimise_dry_cells, number_of_elements, extrapolate_velocity_second_order, e, e2; |
---|
2197 | |
---|
2198 | // Convert Python arguments to C |
---|
2199 | if (!PyArg_ParseTuple(args, "OOOOOOOOOOOOOOOOOOii", |
---|
2200 | &domain, |
---|
2201 | &surrogate_neighbours, |
---|
2202 | &neighbour_edges, |
---|
2203 | &number_of_boundaries, |
---|
2204 | ¢roid_coordinates, |
---|
2205 | &stage_centroid_values, |
---|
2206 | &xmom_centroid_values, |
---|
2207 | &ymom_centroid_values, |
---|
2208 | &elevation_centroid_values, |
---|
2209 | &edge_coordinates, |
---|
2210 | &stage_edge_values, |
---|
2211 | &xmom_edge_values, |
---|
2212 | &ymom_edge_values, |
---|
2213 | &elevation_edge_values, |
---|
2214 | &stage_vertex_values, |
---|
2215 | &xmom_vertex_values, |
---|
2216 | &ymom_vertex_values, |
---|
2217 | &elevation_vertex_values, |
---|
2218 | &optimise_dry_cells, |
---|
2219 | &extrapolate_velocity_second_order)) { |
---|
2220 | |
---|
2221 | report_python_error(AT, "could not parse input arguments"); |
---|
2222 | return NULL; |
---|
2223 | } |
---|
2224 | |
---|
2225 | // check that numpy array objects arrays are C contiguous memory |
---|
2226 | CHECK_C_CONTIG(surrogate_neighbours); |
---|
2227 | CHECK_C_CONTIG(neighbour_edges); |
---|
2228 | CHECK_C_CONTIG(number_of_boundaries); |
---|
2229 | CHECK_C_CONTIG(centroid_coordinates); |
---|
2230 | CHECK_C_CONTIG(stage_centroid_values); |
---|
2231 | CHECK_C_CONTIG(xmom_centroid_values); |
---|
2232 | CHECK_C_CONTIG(ymom_centroid_values); |
---|
2233 | CHECK_C_CONTIG(elevation_centroid_values); |
---|
2234 | CHECK_C_CONTIG(edge_coordinates); |
---|
2235 | CHECK_C_CONTIG(stage_edge_values); |
---|
2236 | CHECK_C_CONTIG(xmom_edge_values); |
---|
2237 | CHECK_C_CONTIG(ymom_edge_values); |
---|
2238 | CHECK_C_CONTIG(elevation_edge_values); |
---|
2239 | CHECK_C_CONTIG(stage_vertex_values); |
---|
2240 | CHECK_C_CONTIG(xmom_vertex_values); |
---|
2241 | CHECK_C_CONTIG(ymom_vertex_values); |
---|
2242 | CHECK_C_CONTIG(elevation_vertex_values); |
---|
2243 | |
---|
2244 | // Get the safety factor beta_w, set in the config.py file. |
---|
2245 | // This is used in the limiting process |
---|
2246 | |
---|
2247 | |
---|
2248 | beta_w = get_python_double(domain,"beta_w"); |
---|
2249 | beta_w_dry = get_python_double(domain,"beta_w_dry"); |
---|
2250 | beta_uh = get_python_double(domain,"beta_uh"); |
---|
2251 | beta_uh_dry = get_python_double(domain,"beta_uh_dry"); |
---|
2252 | beta_vh = get_python_double(domain,"beta_vh"); |
---|
2253 | beta_vh_dry = get_python_double(domain,"beta_vh_dry"); |
---|
2254 | |
---|
2255 | minimum_allowed_height = get_python_double(domain,"minimum_allowed_height"); |
---|
2256 | epsilon = get_python_double(domain,"epsilon"); |
---|
2257 | |
---|
2258 | number_of_elements = stage_centroid_values -> dimensions[0]; |
---|
2259 | |
---|
2260 | //printf("In C before Extrapolate"); |
---|
2261 | //e=1; |
---|
2262 | // Call underlying computational routine |
---|
2263 | e = _extrapolate_second_order_edge_sw(number_of_elements, |
---|
2264 | epsilon, |
---|
2265 | minimum_allowed_height, |
---|
2266 | beta_w, |
---|
2267 | beta_w_dry, |
---|
2268 | beta_uh, |
---|
2269 | beta_uh_dry, |
---|
2270 | beta_vh, |
---|
2271 | beta_vh_dry, |
---|
2272 | (long*) surrogate_neighbours -> data, |
---|
2273 | (long*) neighbour_edges -> data, |
---|
2274 | (long*) number_of_boundaries -> data, |
---|
2275 | (double*) centroid_coordinates -> data, |
---|
2276 | (double*) stage_centroid_values -> data, |
---|
2277 | (double*) xmom_centroid_values -> data, |
---|
2278 | (double*) ymom_centroid_values -> data, |
---|
2279 | (double*) elevation_centroid_values -> data, |
---|
2280 | (double*) edge_coordinates -> data, |
---|
2281 | (double*) stage_edge_values -> data, |
---|
2282 | (double*) xmom_edge_values -> data, |
---|
2283 | (double*) ymom_edge_values -> data, |
---|
2284 | (double*) elevation_edge_values -> data, |
---|
2285 | (double*) stage_vertex_values -> data, |
---|
2286 | (double*) xmom_vertex_values -> data, |
---|
2287 | (double*) ymom_vertex_values -> data, |
---|
2288 | (double*) elevation_vertex_values -> data, |
---|
2289 | optimise_dry_cells, |
---|
2290 | extrapolate_velocity_second_order); |
---|
2291 | |
---|
2292 | if (e == -1) { |
---|
2293 | // Use error string set inside computational routine |
---|
2294 | return NULL; |
---|
2295 | } |
---|
2296 | |
---|
2297 | |
---|
2298 | return Py_BuildValue(""); |
---|
2299 | |
---|
2300 | }// extrapolate_second-order_edge_sw |
---|
2301 | //======================================================================== |
---|
2302 | // Protect -- to prevent the water level from falling below the minimum |
---|
2303 | // bed_edge_value |
---|
2304 | //======================================================================== |
---|
2305 | |
---|
2306 | PyObject *protect(PyObject *self, PyObject *args) { |
---|
2307 | // |
---|
2308 | // protect(minimum_allowed_height, maximum_allowed_speed, wc, zc, xmomc, ymomc) |
---|
2309 | |
---|
2310 | |
---|
2311 | PyArrayObject |
---|
2312 | *wc, //Stage at centroids |
---|
2313 | *wv, //Stage at vertices |
---|
2314 | *zc, //Elevation at centroids |
---|
2315 | *zv, //Elevation at vertices |
---|
2316 | *xmomc, //Momentums at centroids |
---|
2317 | *ymomc, |
---|
2318 | *areas, // Triangle areas |
---|
2319 | *xc, |
---|
2320 | *yc; |
---|
2321 | |
---|
2322 | int N; |
---|
2323 | double minimum_allowed_height, maximum_allowed_speed, epsilon; |
---|
2324 | |
---|
2325 | // Convert Python arguments to C |
---|
2326 | if (!PyArg_ParseTuple(args, "dddOOOOOOOOO", |
---|
2327 | &minimum_allowed_height, |
---|
2328 | &maximum_allowed_speed, |
---|
2329 | &epsilon, |
---|
2330 | &wc, &wv, &zc, &zv, &xmomc, &ymomc, &areas, &xc, &yc)) { |
---|
2331 | report_python_error(AT, "could not parse input arguments"); |
---|
2332 | return NULL; |
---|
2333 | } |
---|
2334 | |
---|
2335 | N = wc -> dimensions[0]; |
---|
2336 | |
---|
2337 | _protect(N, |
---|
2338 | minimum_allowed_height, |
---|
2339 | maximum_allowed_speed, |
---|
2340 | epsilon, |
---|
2341 | (double*) wc -> data, |
---|
2342 | (double*) wv -> data, |
---|
2343 | (double*) zc -> data, |
---|
2344 | (double*) zv -> data, |
---|
2345 | (double*) xmomc -> data, |
---|
2346 | (double*) ymomc -> data, |
---|
2347 | (double*) areas -> data, |
---|
2348 | (double*) xc -> data, |
---|
2349 | (double*) yc -> data ); |
---|
2350 | |
---|
2351 | return Py_BuildValue(""); |
---|
2352 | } |
---|
2353 | |
---|
2354 | //======================================================================== |
---|
2355 | // Method table for python module |
---|
2356 | //======================================================================== |
---|
2357 | |
---|
2358 | static struct PyMethodDef MethodTable[] = { |
---|
2359 | /* The cast of the function is necessary since PyCFunction values |
---|
2360 | * only take two PyObject* parameters, and rotate() takes |
---|
2361 | * three. |
---|
2362 | */ |
---|
2363 | //{"rotate", (PyCFunction)rotate, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
2364 | {"compute_fluxes_ext_central", compute_fluxes_ext_central, METH_VARARGS, "Print out"}, |
---|
2365 | {"gravity_c", gravity, METH_VARARGS, "Print out"}, |
---|
2366 | {"flux_function_central", flux_function_central, METH_VARARGS, "Print out"}, |
---|
2367 | {"extrapolate_second_order_edge_sw", extrapolate_second_order_edge_sw, METH_VARARGS, "Print out"}, |
---|
2368 | {"protect", protect, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
2369 | {NULL, NULL, 0, NULL} |
---|
2370 | }; |
---|
2371 | |
---|
2372 | // Module initialisation |
---|
2373 | void initswb2_domain_ext(void){ |
---|
2374 | Py_InitModule("swb2_domain_ext", MethodTable); |
---|
2375 | |
---|
2376 | import_array(); // Necessary for handling of NumPY structures |
---|
2377 | } |
---|