source: trunk/anuga_work/development/gareth/tests/util.py @ 8385

Last change on this file since 8385 was 8385, checked in by davies, 13 years ago

balanced_dev: Experimenting with flux_based boundary conditions

File size: 11.5 KB
Line 
1""" Random utilities for reading sww file data and for plotting (in ipython, or
2    in scripts)
3
4    Functionality of note:
5
6    util.get_outputs -- read the data from a single sww file into a single object
7   
8    util.combine_outputs -- read the data from a list of sww files into a single object
9   
10    util.near_transect -- for finding the indices of points 'near' to a given
11                       line, and assigning these points a coordinate along that line.
12                       This is useful for plotting outputs which are 'almost' along a
13                       transect (e.g. a channel cross-section) -- see example below
14
15
16
17    Here is an example ipython session which uses some of these functions:
18
19    > import util
20    > from matplotlib import pyplot as pyplot
21    > p=util.get_output('myfile.sww',minimum_allowed_height=0.01)
22    > p2=util.get_centroids(p,velocity_extrapolation=True)
23    > xxx=util.near_transect(p,[95., 85.], [120.,68.],tol=2.) # Could equally well use p2
24    > pyplot.ion() # Interactive plotting
25    > pyplot.scatter(xxx[1],p.vel[140,xxx[0]],color='red') # Plot along the transect
26
27"""
28from Scientific.IO.NetCDF import NetCDFFile
29import numpy
30
31class combine_outputs:
32    """
33    Read in a list of filenames, and combine all their outputs into a single object.
34    e.g.:
35
36    p = util.combine_outputs(['file1.sww', 'file1_time_10000.sww', 'file1_time_20000.sww'], 0.01)
37   
38    will make an object p which has components p.x,p.y,p.time,p.stage, .... etc,
39    where the values of stage / momentum / velocity from the sww files are concatenated as appropriate.
40
41    This is nice for interactive interrogation of model outputs, or for sticking together outputs in scripts
42   
43    WARNING: It is easy to use lots of memory, if the sww files are large.
44
45    Note: If you want the centroid values, then you could subsequently use:
46
47    p2 = util.get_centroids(p,velocity_extrapolation=False)
48
49    which would make an object p2 that is like p, but holds information at centroids
50    """
51    def __init__(self, filename_list, minimum_allowed_height=1.0e-03):
52        #
53        # Go through the sww files in 'filename_list', and combine them into one object.
54        #
55
56        for i, filename in enumerate(filename_list):
57            print i, filename
58            # Store output from filename
59            p_tmp = get_output(filename, minimum_allowed_height)
60            if(i==0):
61                # Create self
62                p1=p_tmp
63            else:
64                # Append extra data to self
65                # Note that p1.x, p1.y, p1.vols, p1.elev should not change
66                assert (p1.x == p_tmp.x).all()
67                assert (p1.y == p_tmp.y).all()
68                assert (p1.vols ==p_tmp.vols).all()
69                p1.time = numpy.append(p1.time, p_tmp.time)
70                p1.stage = numpy.append(p1.stage, p_tmp.stage, axis=0)
71                p1.xmom = numpy.append(p1.xmom, p_tmp.xmom, axis=0)
72                p1.ymom = numpy.append(p1.ymom, p_tmp.ymom, axis=0)
73                p1.xvel = numpy.append(p1.xvel, p_tmp.xvel, axis=0)
74                p1.yvel = numpy.append(p1.yvel, p_tmp.yvel, axis=0)
75                p1.vel = numpy.append(p1.vel, p_tmp.vel, axis=0)
76
77        self.x, self.y, self.time, self.vols, self.elev, self.stage, self.xmom, \
78                self.ymom, self.xvel, self.yvel, self.vel, self.minimum_allowed_height = \
79                p1.x, p1.y, p1.time, p1.vols, p1.elev, p1.stage, p1.xmom, p1.ymom, p1.xvel,\
80                p1.yvel, p1.vel, p1.minimum_allowed_height
81
82
83
84class get_output:
85    """Read in data from an .sww file in a convenient form
86       e.g.
87        p = util.get_output('channel3.sww', minimum_allowed_height=0.01)
88       
89       p then contains most relevant information as e.g., p.stage, p.elev, p.xmom, etc
90    """
91    def __init__(self, filename, minimum_allowed_height=1.0e-03):
92        self.x, self.y, self.time, self.vols, self.stage, \
93                self.elev, self.xmom, self.ymom, \
94                self.xvel, self.yvel, self.vel, self.minimum_allowed_height = \
95                read_output(filename, minimum_allowed_height)
96
97
98def read_output(filename, minimum_allowed_height):
99    # Input: The name of an .sww file to read data from,
100    #                    e.g. read_sww('channel3.sww')
101    #
102    # Purpose: To read the sww file, and output a number of variables as arrays that
103    #          we can then manipulate (e.g. plot, interrogate)
104    #
105    # Output: x, y, time, stage, elev, xmom, ymom, xvel, yvel, vel
106
107    # Import modules
108
109
110
111    # Open ncdf connection
112    fid=NetCDFFile(filename)
113
114
115    # Read variables
116    x=fid.variables['x']
117    x=x.getValue()
118    y=fid.variables['y']
119    y=y.getValue()
120
121    stage=fid.variables['stage']
122    stage=stage.getValue()
123
124    elev=fid.variables['elevation']
125    elev=elev.getValue()
126
127    xmom=fid.variables['xmomentum']
128    xmom=xmom.getValue()
129
130    ymom=fid.variables['ymomentum']
131    ymom=ymom.getValue()
132
133    time=fid.variables['time']
134    time=time.getValue()
135
136    vols=fid.variables['volumes']
137    vols=vols.getValue()
138
139
140    # Calculate velocity = momentum/depth
141    xvel=xmom*0.0
142    yvel=ymom*0.0
143
144    for i in range(xmom.shape[0]):
145        xvel[i,:]=xmom[i,:]/(stage[i,:]-elev+1.0e-06)*(stage[i,:]> elev+minimum_allowed_height)
146        yvel[i,:]=ymom[i,:]/(stage[i,:]-elev+1.0e-06)*(stage[i,:]> elev+minimum_allowed_height)
147
148    vel = (xvel**2+yvel**2)**0.5
149
150    return x, y, time, vols, stage, elev, xmom, ymom, xvel, yvel, vel, minimum_allowed_height
151
152##############
153
154
155
156class get_centroids:
157    """
158    Extract centroid values from the output of get_output. 
159    e.g.
160        p = util.get_output('my_sww.sww', minimum_allowed_height=0.01) # vertex values
161        pc=util.get_centroids(p, velocity_extrapolation=True) # centroid values
162    """
163    def __init__(self,p, velocity_extrapolation=False):
164        self.time, self.x, self.y, self.stage, self.xmom,\
165             self.ymom, self.elev, self.xvel, \
166             self.yvel, self.vel= \
167             get_centroid_values(p, velocity_extrapolation)
168                                 
169
170def get_centroid_values(p, velocity_extrapolation):
171    # Input: p is the result of e.g. p=util.get_output('mysww.sww'). See the get_output class defined above
172    # Output: Values of x, y, Stage, xmom, ymom, elev, xvel, yvel, vel at centroids
173    #import numpy
174   
175    # Make 3 arrays, each containing one index of a vertex of every triangle.
176    l=len(p.vols)
177    vols0=numpy.zeros(l, dtype='int')
178    vols1=numpy.zeros(l, dtype='int')
179    vols2=numpy.zeros(l, dtype='int')
180
181    # FIXME: 22/2/12/ - I think this loop is slow, should be able to do this
182    # another way
183    for i in range(l):
184        vols0[i]=p.vols[i][0]
185        vols1[i]=p.vols[i][1]
186        vols2[i]=p.vols[i][2]
187
188    # Then use these to compute centroid averages
189    x_cent=(p.x[vols0]+p.x[vols1]+p.x[vols2])/3.0
190    y_cent=(p.y[vols0]+p.y[vols1]+p.y[vols2])/3.0
191
192    stage_cent=(p.stage[:,vols0]+p.stage[:,vols1]+p.stage[:,vols2])/3.0
193    elev_cent=(p.elev[vols0]+p.elev[vols1]+p.elev[vols2])/3.0
194
195    # Here, we need to treat differently the case of momentum extrapolation or
196    # velocity extrapolation
197    if velocity_extrapolation:
198        xvel_cent=(p.xvel[:,vols0]+p.xvel[:,vols1]+p.xvel[:,vols2])/3.0
199        yvel_cent=(p.yvel[:,vols0]+p.yvel[:,vols1]+p.yvel[:,vols2])/3.0
200       
201        # Now compute momenta
202        xmom_cent=stage_cent*0.0
203        ymom_cent=stage_cent*0.0
204
205        t=len(p.time)
206
207        for i in range(t):
208            xmom_cent[i,:]=xvel_cent[i,:]*(stage_cent[i,:]-elev_cent+1.0e-06)*\
209                                            (stage_cent[i,:]>elev_cent+p.minimum_allowed_height)
210            ymom_cent[i,:]=yvel_cent[i,:]*(stage_cent[i,:]-elev_cent+1.0e-06)*\
211                                            (stage_cent[i,:]>elev_cent+p.minimum_allowed_height)
212
213    else:
214        xmom_cent=(p.xmom[:,vols0]+p.xmom[:,vols1]+p.xmom[:,vols2])/3.0
215        ymom_cent=(p.ymom[:,vols0]+p.ymom[:,vols1]+p.ymom[:,vols2])/3.0
216
217        # Now compute velocities
218        xvel_cent=stage_cent*0.0
219        yvel_cent=stage_cent*0.0
220
221        t=len(p.time)
222
223        for i in range(t):
224            xvel_cent[i,:]=xmom_cent[i,:]/(stage_cent[i,:]-elev_cent+1.0e-06)*(stage_cent[i,:]>elev_cent+p.minimum_allowed_height)
225            yvel_cent[i,:]=ymom_cent[i,:]/(stage_cent[i,:]-elev_cent+1.0e-06)*(stage_cent[i,:]>elev_cent+p.minimum_allowed_height)
226   
227
228    # Compute velocity
229    vel_cent=(xvel_cent**2 + yvel_cent**2)**0.5
230
231    return p.time, x_cent, y_cent, stage_cent, xmom_cent,\
232             ymom_cent, elev_cent, xvel_cent, yvel_cent, vel_cent
233
234# Make plot of stage over time.
235#pylab.close()
236#pylab.ion()
237#pylab.plot(time, stage[:,1])
238#for i in range(201):
239#    pylab.plot(time,stage[:,i])
240
241# Momentum should be 0.
242#print 'Momentum max/min is', xmom.max() , xmom.min()
243
244#pylab.gca().set_aspect('equal')
245#pylab.scatter(x,y,c=elev,edgecolors='none')
246#pylab.colorbar()
247#
248#n=xvel.shape[0]-1
249#pylab.quiver(x,y,xvel[n,:],yvel[n,:])
250#pylab.savefig('Plot1.png')
251
252def animate_1D(time, var, x, ylab=' '): #, x=range(var.shape[1]), vmin=var.min(), vmax=var.max()):
253    # Input: time = one-dimensional time vector;
254    #        var =  array with first dimension = len(time) ;
255    #        x = (optional) vector width dimension equal to var.shape[1];
256   
257    import pylab
258    import numpy
259   
260   
261
262    pylab.close()
263    pylab.ion()
264
265    # Initial plot
266    vmin=var.min()
267    vmax=var.max()
268    line, = pylab.plot( (x.min(), x.max()), (vmin, vmax), 'o')
269
270    # Lots of plots
271    for i in range(len(time)):
272        line.set_xdata(x)
273        line.set_ydata(var[i,:])
274        pylab.draw()
275        pylab.xlabel('x')
276        pylab.ylabel(ylab)
277        pylab.title('time = ' + str(time[i]))
278   
279    return
280
281def near_transect(p, point1, point2, tol=1.):
282    # Function to get the indices of points in p less than 'tol' from the line
283    # joining (x1,y1), and (x2,y2)
284    # p comes from util.get_output('mysww.sww')
285    #
286    # e.g.
287    # import util
288    # from matplotlib import pyplot
289    # p=util.get_output('merewether_1m.sww',0.01)
290    # p2=util.get_centroids(p,velocity_extrapolation=True)
291    # #xxx=transect_interpolate.near_transect(p,[95., 85.], [120.,68.],tol=2.)
292    # xxx=util.near_transect(p,[95., 85.], [120.,68.],tol=2.)
293    # pyplot.scatter(xxx[1],p.vel[140,xxx[0]],color='red')
294
295    x1=point1[0]
296    y1=point1[1]
297
298    x2=point2[0]
299    y2=point2[1]
300
301    # Find line equation a*x + b*y + c = 0
302    # based on y=gradient*x +intercept
303    if x1!=x2:
304        gradient= (y2-y1)/(x2-x1)
305        intercept = y1 - gradient*x1
306
307        a = -gradient
308        b = 1.
309        c = -intercept
310    else:
311        #print 'FIXME: Still need to treat 0 and infinite gradients'
312        #assert 0==1
313        a=1.
314        b=0.
315        c=-x2
316
317    # Distance formula
318    inv_denom = 1./(a**2 + b**2)**0.5
319    distp = abs(p.x*a + p.y*b + c)*inv_denom
320
321    near_points = (distp<tol).nonzero()[0]
322   
323    # Now find a 'local' coordinate for the point, projected onto the line
324    # g1 = unit vector parallel to the line
325    # g2 = vector joining (x1,y1) and (p.x,p.y)
326    g1x = x2-x1
327    g1y = y2-y1
328    g1_norm = (g1x**2 + g1y**2)**0.5
329    g1x=g1x/g1_norm
330    g1y=g1x/g1_norm
331
332    g2x = p.x[near_points] - x1
333    g2y = p.y[near_points] - y1
334   
335    # Dot product = projected distance == a local coordinate
336    local_coord = g1x*g2x + g1y*g2y
337
338    return near_points, local_coord
Note: See TracBrowser for help on using the repository browser.