"""Stochastic study of the ANUGA implementation of the shallow water wave equation. This script runs the model for one realisation of bathymetry as given in the file bathymetry.txt and outputs a full simulation is \ sww NetCDF format. The left boundary condition is a timeseries defined in NetCDF file: input_wave.tms Note: This scripts needs create_mesh.py to have been run Suresh Kumar and Ole Nielsen 2006 """ #------------------------------------------------------------------------------ # Import necessary modules #------------------------------------------------------------------------------ # Standard modules import os import time import cPickle # Related major packages from anuga.pyvolution.shallow_water import Domain from anuga.pyvolution.shallow_water import Reflective_boundary from anuga.pyvolution.shallow_water import Transmissive_Momentum_Set_Stage_boundary from anuga.pyvolution.pmesh2domain import pmesh_to_domain_instance from anuga.pyvolution.data_manager import xya2pts from anuga.pyvolution.util import file_function from caching.caching import cache # Application specific imports import project # Definition of file names and polygons #----------------------------------------------------------------------------- # Read in processor information #----------------------------------------------------------------------------- try: import pypar except: print 'Could not import pypar' myid = 0 numprocs = 1 processor_name = 'local host' else: myid = pypar.rank() numprocs = pypar.size() processor_name = pypar.Get_processor_name() print 'I am process %d of %d running on %s' %(myid, numprocs, processor_name) #----------------------------------------------------------------------------- # Setup computational domain #----------------------------------------------------------------------------- #print 'Creating domain from', project.mesh_filename domain = Domain(project.working_dir + project.mesh_filename, use_cache=False, verbose=False) #print 'Number of triangles = ', len(domain) #print domain.statistics() domain.set_datadir(project.working_dir) domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) #------------------------------------------------------------------------------ # Setup boundary conditions #------------------------------------------------------------------------------ function = file_function(project.boundary_filename, domain, verbose = False) Bts = Transmissive_Momentum_Set_Stage_boundary(domain, function) #Input wave Br = Reflective_boundary(domain) #Wall # Bind boundary objects to tags domain.set_boundary({'wave': Bts, 'wall': Br}) #------------------------------------------------------------------------------ # Setup initial conditions #------------------------------------------------------------------------------ domain.set_quantity('friction', 0.0) domain.set_quantity('stage', 0.0) # Get prefitted realisations finaltime = 22.5 timestep = 0.05 realisation = 0 for filename in os.listdir(project.working_dir): if filename.startswith(project.basename) and filename.endswith('.pck'): print 'P%d: Reading %s' %(myid, filename) fid = open(project.working_dir + filename) V = cPickle.load(fid) fid.close() #if myid == 0: # print 'V', V[6:7,:] # For each column (each realisation) for i in range(V.shape[1]): # Distribute work in round-robin fashion if i%numprocs == myid: name = project.basename + '_P%d' %myid domain.set_name(name) #Output name print 'V', V.shape domain.set_quantity('elevation', V[:,i]) #Assign bathymetry print 'P%d: Setting quantity %d: %s' %(myid, i, str(V[:4,i])) domain.set_time(0.0) #Reset time #--------------------------------------------------- # Evolve system through time #--------------------------------------------------- print 'P%d: Running realisation %d of %d in block %s'\ %(myid, realisation, V.shape[1], filename) t0 = time.time() for t in domain.evolve(yieldstep = timestep, finaltime = finaltime): pass domain.write_time() print 'P%d: Simulation of realisation %d took %.2f seconds'\ %(myid, realisation, time.time()-t0) #--------------------------------------------------- # Now extract the 3 timeseries (Ch 5-7-9) and store them # in three files for this realisation print 'P%d: Extracting time series for realisation %d from file %s'\ %(myid, realisation, project.working_dir +\ domain.get_name() + '.sww') f = file_function(project.working_dir +\ domain.get_name() + '.sww', quantities='stage', interpolation_points=project.gauges, verbose=False) simulation_name = project.working_dir + \ project.basename + '_realisation_%d' %realisation print 'P%d: Writing to file %s'\ %(myid, simulation_name + '_' + name + '.txt') for k, name in enumerate(project.gauge_names): fid = open(simulation_name + '_' + name + '.txt', 'w') for t in f.get_time(): #For all precomputed timesteps val = f(t, point_id = k)[0] fid.write('%f %f\n' %(t, val)) fid.close() realisation += 1 pypar.finalize()