""" This module contains various auxiliary function used by pyvolution. """ def mean(x): from Numeric import sum return sum(x)/len(x) def gradient(x0, x1, q0, q1): if q1-q0 != 0: a = (q1-q0)/(x1-x0) else: a = 0 return a def minmod(beta_p,beta_m): if (abs(beta_p) <= abs(beta_m)) & (beta_p*beta_m > 0.0): phi = beta_p elif (abs(beta_m) < abs(beta_p)) & (beta_p*beta_m > 0.0): phi = beta_m else: phi = 0.0 return phi def minmod_kurganov(a,b,c): from Numeric import sign if sign(a)==sign(b)==sign(c): return sign(a)*min(abs(a),abs(b),abs(c)) else: return 0.0 def maxmod(a,b): if (abs(a) >= abs(b)) & (a*b > 0.0): phi = a elif (abs(b) > abs(a)) & (a*b > 0.0): phi = b else: phi = 0.0 return phi def vanleer(a,b): if abs(a)+abs(b) > 1e-12: return (a*abs(b)+abs(a)*b)/(abs(a)+abs(b)) else: return 0.0 def vanalbada(a,b): if a*a+b*b > 1e-12: return (a*a*b+a*b*b)/(a*a+b*b) else: return 0.0 def calculate_wetted_area(x1,x2,z1,z2,w1,w2): if (w1 > z1) & (w2 < z2) & (z1 <= z2): x = ((w2-z1)*(x2-x1)+x1*(z2-z1)-x2*(w2-w1))/(z2-z1+w1-w2) A = 0.5*(w1-z1)*(x-x1) L = x-x1 elif (w1 < z1) & (w2 > z2) & (z1 < z2): x = ((w2-z1)*(x2-x1)+x1*(z2-z1)-x2*(w2-w1))/(z2-z1+w1-w2) A = 0.5*(w2-z2)*(x2-x) L = x2-x elif (w1 < z1) & (w2 > z2) & (z1 >= z2): x = ((w1-z2)*(x2-x1)+x2*(z2-z1)-x1*(w2-w1))/(z2-z1+w1-w2) A = 0.5*(w2-z2)*(x2-x) L = x2-x elif (w1 > z1) & (w2 < z2) & (z1 > z2): x = ((w1-z2)*(x2-x1)+x2*(z2-z1)-x1*(w2-w1))/(z2-z1+w1-w2) A = 0.5*(w1-z1)*(x-x1) L = x-x1 elif (w1 <= z1) & (w2 <= z2): A = 0.0 elif (w1 == z1) & (w2 > z2) & (z2 < z1): A = 0.5*(x2-x1)*(w2-z2) elif (w2 == z2) & (w1 > z1) & (z1 < z2): A = 0.5*(x2-x1)*(w1-z1) return A def calculate_new_wet_area(x1,x2,z1,z2,A): from Numeric import sqrt min_centroid_height = 1.0e-3 # Assumes reconstructed stage flat in a wetted cell M = (z2-z1)/(x2-x1) L = (x2-x1) min_area = min_centroid_height*L max_area = 0.5*(x2-x1)*abs(z2-z1) if A < max_area: if (z1 < z2): x = sqrt(2*A/M)+x1 wet_len = x-x1 wc = z1 + sqrt(M*2*A) elif (z2 < z1): x = -sqrt(-2*A/M)+x2 wet_len = x2-x wc = z2+sqrt(-M*2*A) else: wc = A/L+0.5*(z1+z2) wet_len = x2-x1 else: wc = 0.5*(z1+z2)+A/L wet_len = x2-x1 return wc,wet_len def calculate_new_wet_area_analytic(x1,x2,z1,z2,A,t): min_centroid_height = 1.0e-3 # Assumes reconstructed stage flat in a wetted cell M = (z2-z1)/(x2-x1) L = (x2-x1) min_area = min_centroid_height*L max_area = 0.5*(x2-x1)*abs(z2-z1) w1,uh1 = analytic_cannal(x1,t) w2,uh2 = analytic_cannal(x2,t) if (w1 > z1) & (w2 < z2) & (z1 <= z2): print "test1" x = ((w2-z1)*(x2-x1)+x1*(z2-z1)-x2*(w2-w1))/(z2-z1+w1-w2) wet_len = x-x1 elif (w1 < z1) & (w2 > z2) & (z1 < z2): print "test2" x = ((w2-z1)*(x2-x1)+x1*(z2-z1)-x2*(w2-w1))/(z2-z1+w1-w2) wet_len = x2-x elif (w1 < z1) & (w2 > z2) & (z1 >= z2): print "test3" x = ((w1-z2)*(x2-x1)+x2*(z2-z1)-x1*(w2-w1))/(z2-z1+w1-w2) wet_len = x2-x elif (w1 > z1) & (w2 < z2) & (z1 > z2): print "test4" x = ((w1-z2)*(x2-x1)+x2*(z2-z1)-x1*(w2-w1))/(z2-z1+w1-w2) wet_len = x-x1 elif (w1 >= z1) & (w2 >= z2): print "test5" wet_len = x2-x1 else: #(w1 <= z1) & (w2 <= z2) print "test5" if (w1 > z1) | (w2 > z2): print "ERROR" wet_len = x2-x1 return w1,w2,wet_len,uh1,uh2 def analytic_cannal(C,t): from Numeric import Float,sqrt,sin,cos from numpy import zeros #N = len(C) #u = zeros(N,Float) ## water velocity #h = zeros(N,Float) ## water depth x = C g = 9.81 ## Define Basin Bathymetry #z_b = zeros(N,Float) ## elevation of basin #z = zeros(N,Float) ## elevation of water surface z_infty = 10.0 ## max equilibrium water depth at lowest point. L_x = 2500.0 ## width of channel A0 = 0.5*L_x ## determines amplitudes of oscillations omega = sqrt(2*g*z_infty)/L_x ## angular frequency of osccilation x1 = A0*cos(omega*t)-L_x # left shoreline x2 = A0*cos(omega*t)+L_x # right shoreline if (x >=x1) & (x <= x2): z_b = z_infty*(x**2/L_x**2) ## or A0*cos(omega*t)\pmL_x u = -A0*omega*sin(omega*t) z = z_infty+2*A0*z_infty/L_x*cos(omega*t)*(x/L_x-0.5*A0/(L_x)*cos(omega*t)) else: z_b = z_infty*(x**2/L_x**2) u=0.0 z = z_b h = z-z_b return z,u*h