1 | |
---|
2 | from anuga.shallow_water.shallow_water_domain import * |
---|
3 | from anuga.shallow_water.shallow_water_domain import Domain as Sww_domain |
---|
4 | |
---|
5 | |
---|
6 | ############################################################################## |
---|
7 | # Shallow Water Balanced Domain |
---|
8 | # |
---|
9 | # Uses extra evolved quantities height, elevation, xvelocity, yvelocity |
---|
10 | ############################################################################## |
---|
11 | |
---|
12 | class Domain(Sww_domain): |
---|
13 | |
---|
14 | def __init__(self, |
---|
15 | coordinates=None, |
---|
16 | vertices=None, |
---|
17 | boundary=None, |
---|
18 | tagged_elements=None, |
---|
19 | geo_reference=None, |
---|
20 | use_inscribed_circle=False, |
---|
21 | mesh_filename=None, |
---|
22 | use_cache=False, |
---|
23 | verbose=False, |
---|
24 | full_send_dict=None, |
---|
25 | ghost_recv_dict=None, |
---|
26 | starttime=0.0, |
---|
27 | processor=0, |
---|
28 | numproc=1, |
---|
29 | number_of_full_nodes=None, |
---|
30 | number_of_full_triangles=None): |
---|
31 | |
---|
32 | conserved_quantities = [ 'stage', 'xmomentum', 'ymomentum'] |
---|
33 | |
---|
34 | evolved_quantities = [ 'stage', 'xmomentum', 'ymomentum', \ |
---|
35 | 'height', 'elevation', \ |
---|
36 | 'xvelocity', 'yvelocity' ] |
---|
37 | |
---|
38 | other_quantities = [ 'friction', 'x', 'y' ] |
---|
39 | |
---|
40 | |
---|
41 | Sww_domain.__init__(self, |
---|
42 | coordinates = coordinates, |
---|
43 | vertices = vertices, |
---|
44 | boundary = boundary, |
---|
45 | tagged_elements = tagged_elements, |
---|
46 | geo_reference = geo_reference, |
---|
47 | use_inscribed_circle = use_inscribed_circle, |
---|
48 | mesh_filename = mesh_filename, |
---|
49 | use_cache = use_cache, |
---|
50 | verbose = verbose, |
---|
51 | conserved_quantities = conserved_quantities, |
---|
52 | evolved_quantities = evolved_quantities, |
---|
53 | other_quantities = other_quantities, |
---|
54 | full_send_dict = full_send_dict, |
---|
55 | ghost_recv_dict = ghost_recv_dict, |
---|
56 | starttime = starttime, |
---|
57 | processor = processor, |
---|
58 | numproc = numproc, |
---|
59 | number_of_full_nodes = number_of_full_nodes, |
---|
60 | number_of_full_triangles = number_of_full_triangles) |
---|
61 | |
---|
62 | #--------------------- |
---|
63 | # set some defaults |
---|
64 | #--------------------- |
---|
65 | self.set_timestepping_method(2) |
---|
66 | self.set_default_order(2) |
---|
67 | self.set_sloped_mannings_function(True) |
---|
68 | self.set_centroid_transmissive_bc(True) |
---|
69 | self.set_CFL(1.0) |
---|
70 | self.set_beta(1.5) |
---|
71 | self.quantities['height'].set_beta(1.5) |
---|
72 | |
---|
73 | #-------------------------------------------- |
---|
74 | # Replace shallow water gravity forcing term |
---|
75 | # with swb version |
---|
76 | #-------------------------------------------- |
---|
77 | self.forcing_terms[1] = swb_gravity |
---|
78 | |
---|
79 | print "Swb_domain" |
---|
80 | |
---|
81 | def check_integrity(self): |
---|
82 | Sww_domain.check_integrity(self) |
---|
83 | |
---|
84 | #Check that the evolved quantities are correct (order) |
---|
85 | msg = 'First evolved quantity must be "stage"' |
---|
86 | assert self.evolved_quantities[0] == 'stage', msg |
---|
87 | msg = 'Second evolved quantity must be "xmomentum"' |
---|
88 | assert self.evolved_quantities[1] == 'xmomentum', msg |
---|
89 | msg = 'Third evolved quantity must be "ymomentum"' |
---|
90 | assert self.evolved_quantities[2] == 'ymomentum', msg |
---|
91 | msg = 'Fourth evolved quantity must be "height"' |
---|
92 | assert self.evolved_quantities[3] == 'height', msg |
---|
93 | msg = 'Fifth evolved quantity must be "elevation"' |
---|
94 | assert self.evolved_quantities[4] == 'elevation', msg |
---|
95 | msg = 'Sixth evolved quantity must be "xvelocity"' |
---|
96 | assert self.evolved_quantities[5] == 'xvelocity', msg |
---|
97 | msg = 'Seventh evolved quantity must be "yvelocity"' |
---|
98 | assert self.evolved_quantities[6] == 'yvelocity', msg |
---|
99 | |
---|
100 | msg = 'First other quantity must be "friction"' |
---|
101 | assert self.other_quantities[0] == 'friction', msg |
---|
102 | msg = 'Second other quantity must be "x"' |
---|
103 | assert self.other_quantities[1] == 'x', msg |
---|
104 | msg = 'Third other quantity must be "y"' |
---|
105 | assert self.other_quantities[2] == 'y', msg |
---|
106 | |
---|
107 | |
---|
108 | def compute_fluxes(self): |
---|
109 | """ |
---|
110 | Call correct module function (either from this module or C-extension) |
---|
111 | """ |
---|
112 | |
---|
113 | from swb_domain_ext import compute_fluxes_c |
---|
114 | |
---|
115 | #Shortcuts |
---|
116 | W = self.quantities['stage'] |
---|
117 | UH = self.quantities['xmomentum'] |
---|
118 | VH = self.quantities['ymomentum'] |
---|
119 | H = self.quantities['height'] |
---|
120 | Z = self.quantities['elevation'] |
---|
121 | U = self.quantities['xvelocity'] |
---|
122 | V = self.quantities['yvelocity'] |
---|
123 | |
---|
124 | timestep = self.get_evolve_max_timestep() |
---|
125 | |
---|
126 | self.flux_timestep = \ |
---|
127 | compute_fluxes_c(timestep, self, W, UH, VH, H, Z, U, V) |
---|
128 | |
---|
129 | |
---|
130 | def distribute_to_vertices_and_edges(self): |
---|
131 | """Distribution from centroids to edges specific to the SWW eqn. |
---|
132 | |
---|
133 | It will ensure that h (w-z) is always non-negative even in the |
---|
134 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
135 | and deep cases. |
---|
136 | |
---|
137 | In addition, all conserved quantities get distributed as per either a |
---|
138 | constant (order==1) or a piecewise linear function (order==2). |
---|
139 | |
---|
140 | |
---|
141 | Precondition: |
---|
142 | All conserved quantities defined at centroids and bed elevation defined at |
---|
143 | edges. |
---|
144 | |
---|
145 | Postcondition |
---|
146 | Evolved quantities defined at vertices and edges |
---|
147 | """ |
---|
148 | |
---|
149 | from anuga.shallow_water.shallow_water_domain import \ |
---|
150 | protect_against_infinitesimal_and_negative_heights as protect |
---|
151 | |
---|
152 | #Shortcuts |
---|
153 | W = self.quantities['stage'] |
---|
154 | UH = self.quantities['xmomentum'] |
---|
155 | VH = self.quantities['ymomentum'] |
---|
156 | H = self.quantities['height'] |
---|
157 | Z = self.quantities['elevation'] |
---|
158 | U = self.quantities['xvelocity'] |
---|
159 | V = self.quantities['yvelocity'] |
---|
160 | |
---|
161 | #Arrays |
---|
162 | w_C = W.centroid_values |
---|
163 | uh_C = UH.centroid_values |
---|
164 | vh_C = VH.centroid_values |
---|
165 | z_C = Z.centroid_values |
---|
166 | h_C = H.centroid_values |
---|
167 | u_C = U.centroid_values |
---|
168 | v_C = V.centroid_values |
---|
169 | |
---|
170 | #num_min = num.min(w_C-z_C) |
---|
171 | #if num_min < -1.0e-5: |
---|
172 | # print '**** num.min(w_C-z_C)', num_min |
---|
173 | |
---|
174 | |
---|
175 | w_C[:] = num.maximum(w_C, z_C) |
---|
176 | h_C[:] = w_C - z_C |
---|
177 | |
---|
178 | |
---|
179 | assert num.min(h_C) >= 0.0 |
---|
180 | |
---|
181 | num.putmask(uh_C, h_C < 1.0e-15, 0.0) |
---|
182 | num.putmask(vh_C, h_C < 1.0e-15, 0.0) |
---|
183 | #num.putmask(h_C, h_C < 1.0e-15, 1.0e-16) |
---|
184 | |
---|
185 | # Noelle has an alternative method for calculating velcities |
---|
186 | # Check it out in the GPU shallow water paper |
---|
187 | H0 = 1.0e-16 |
---|
188 | u_C[:] = uh_C/(h_C + H0/h_C) |
---|
189 | v_C[:] = vh_C/(h_C + H0/h_C) |
---|
190 | |
---|
191 | #num.putmask(h_C, h_C < 1.0e-15, 0.0) |
---|
192 | |
---|
193 | for name in [ 'stage', 'xvelocity', 'yvelocity' ]: |
---|
194 | Q = self.quantities[name] |
---|
195 | if self._order_ == 1: |
---|
196 | Q.extrapolate_first_order() |
---|
197 | elif self._order_ == 2: |
---|
198 | Q.extrapolate_second_order_and_limit_by_edge() |
---|
199 | #Q.extrapolate_second_order_and_limit_by_vertex() |
---|
200 | else: |
---|
201 | raise Exception('Unknown order: %s' % str(self._order_)) |
---|
202 | |
---|
203 | for name in [ 'height' ]: |
---|
204 | Q = self.quantities[name] |
---|
205 | if self._order_ == 1: |
---|
206 | Q.extrapolate_first_order() |
---|
207 | elif self._order_ == 2: |
---|
208 | #Q.extrapolate_second_order_and_limit_by_edge() |
---|
209 | Q.extrapolate_second_order_and_limit_by_vertex() |
---|
210 | else: |
---|
211 | raise Exception('Unknown order: %s' % str(self._order_)) |
---|
212 | |
---|
213 | |
---|
214 | w_V = W.vertex_values |
---|
215 | u_V = U.vertex_values |
---|
216 | v_V = V.vertex_values |
---|
217 | z_V = Z.vertex_values |
---|
218 | |
---|
219 | h_V = H.vertex_values |
---|
220 | uh_V = UH.vertex_values |
---|
221 | vh_V = VH.vertex_values |
---|
222 | |
---|
223 | |
---|
224 | # Update other quantities |
---|
225 | #protect(self) |
---|
226 | |
---|
227 | z_V[:] = w_V - h_V |
---|
228 | uh_V[:] = u_V * h_V |
---|
229 | vh_V[:] = v_V * h_V |
---|
230 | |
---|
231 | |
---|
232 | num_min = num.min(h_V) |
---|
233 | if num_min < -1.0e-14: |
---|
234 | print 'num.min(h_V)', num_min |
---|
235 | |
---|
236 | |
---|
237 | # Compute edge values by interpolation |
---|
238 | for name in ['xmomentum', 'ymomentum', 'elevation']: |
---|
239 | Q = self.quantities[name] |
---|
240 | Q.interpolate_from_vertices_to_edges() |
---|
241 | |
---|
242 | |
---|
243 | |
---|
244 | |
---|
245 | |
---|
246 | def distribute_to_vertices_and_edges_h(self): |
---|
247 | """Distribution from centroids to edges specific to the SWW eqn. |
---|
248 | |
---|
249 | It will ensure that h (w-z) is always non-negative even in the |
---|
250 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
251 | and deep cases. |
---|
252 | |
---|
253 | In addition, all conserved quantities get distributed as per either a |
---|
254 | constant (order==1) or a piecewise linear function (order==2). |
---|
255 | |
---|
256 | |
---|
257 | Precondition: |
---|
258 | All conserved quantities defined at centroids and bed elevation defined at |
---|
259 | edges. |
---|
260 | |
---|
261 | Postcondition |
---|
262 | Evolved quantities defined at vertices and edges |
---|
263 | """ |
---|
264 | |
---|
265 | |
---|
266 | #Shortcuts |
---|
267 | W = self.quantities['stage'] |
---|
268 | UH = self.quantities['xmomentum'] |
---|
269 | VH = self.quantities['ymomentum'] |
---|
270 | H = self.quantities['height'] |
---|
271 | Z = self.quantities['elevation'] |
---|
272 | U = self.quantities['xvelocity'] |
---|
273 | V = self.quantities['yvelocity'] |
---|
274 | |
---|
275 | #Arrays |
---|
276 | w_C = W.centroid_values |
---|
277 | uh_C = UH.centroid_values |
---|
278 | vh_C = VH.centroid_values |
---|
279 | z_C = Z.centroid_values |
---|
280 | h_C = H.centroid_values |
---|
281 | u_C = U.centroid_values |
---|
282 | v_C = V.centroid_values |
---|
283 | |
---|
284 | w_C[:] = num.maximum(w_C, z_C) |
---|
285 | |
---|
286 | h_C[:] = w_C - z_C |
---|
287 | |
---|
288 | |
---|
289 | assert num.min(h_C) >= 0 |
---|
290 | |
---|
291 | num.putmask(uh_C, h_C < 1.0e-15, 0.0) |
---|
292 | num.putmask(vh_C, h_C < 1.0e-15, 0.0) |
---|
293 | num.putmask(h_C, h_C < 1.0e-15, 1.0e-16) |
---|
294 | |
---|
295 | u_C[:] = uh_C/h_C |
---|
296 | v_C[:] = vh_C/h_C |
---|
297 | |
---|
298 | num.putmask(h_C, h_C < 1.0e-15, 0.0) |
---|
299 | |
---|
300 | for name in [ 'stage', 'height', 'xvelocity', 'yvelocity' ]: |
---|
301 | Q = self.quantities[name] |
---|
302 | if self._order_ == 1: |
---|
303 | Q.extrapolate_first_order() |
---|
304 | elif self._order_ == 2: |
---|
305 | Q.extrapolate_second_order_and_limit_by_edge() |
---|
306 | #Q.extrapolate_second_order_and_limit_by_vertex() |
---|
307 | else: |
---|
308 | raise Exception('Unknown order: %s' % str(self._order_)) |
---|
309 | |
---|
310 | |
---|
311 | w_E = W.edge_values |
---|
312 | uh_E = UH.edge_values |
---|
313 | vh_E = VH.edge_values |
---|
314 | h_E = H.edge_values |
---|
315 | z_E = Z.edge_values |
---|
316 | u_E = U.edge_values |
---|
317 | v_E = V.edge_values |
---|
318 | |
---|
319 | |
---|
320 | #minh_E = num.min(h_E) |
---|
321 | #msg = 'min h_E = %g ' % minh_E |
---|
322 | #assert minh_E >= -1.0e-15, msg |
---|
323 | |
---|
324 | z_E[:] = w_E - h_E |
---|
325 | |
---|
326 | num.putmask(h_E, h_E <= 1.0e-8, 0.0) |
---|
327 | num.putmask(u_E, h_E <= 1.0e-8, 0.0) |
---|
328 | num.putmask(v_E, h_E <= 1.0e-8, 0.0) |
---|
329 | num.putmask(w_E, h_E <= 1.0e-8, z_E) |
---|
330 | #num.putmask(h_E, h_E <= 0.0, 0.0) |
---|
331 | |
---|
332 | uh_E[:] = u_E * h_E |
---|
333 | vh_E[:] = v_E * h_E |
---|
334 | |
---|
335 | """ |
---|
336 | print '==========================================================' |
---|
337 | print 'Time ', self.get_time() |
---|
338 | print h_E |
---|
339 | print uh_E |
---|
340 | print vh_E |
---|
341 | """ |
---|
342 | |
---|
343 | # Compute vertex values by interpolation |
---|
344 | for name in self.evolved_quantities: |
---|
345 | Q = self.quantities[name] |
---|
346 | Q.interpolate_from_edges_to_vertices() |
---|
347 | |
---|
348 | |
---|
349 | w_V = W.vertex_values |
---|
350 | uh_V = UH.vertex_values |
---|
351 | vh_V = VH.vertex_values |
---|
352 | z_V = Z.vertex_values |
---|
353 | h_V = H.vertex_values |
---|
354 | u_V = U.vertex_values |
---|
355 | v_V = V.vertex_values |
---|
356 | |
---|
357 | |
---|
358 | #w_V[:] = z_V + h_V |
---|
359 | |
---|
360 | #num.putmask(u_V, h_V <= 0.0, 0.0) |
---|
361 | #num.putmask(v_V, h_V <= 0.0, 0.0) |
---|
362 | #num.putmask(w_V, h_V <= 0.0, z_V) |
---|
363 | #num.putmask(h_V, h_V <= 0.0, 0.0) |
---|
364 | |
---|
365 | uh_V[:] = u_V * h_V |
---|
366 | vh_V[:] = v_V * h_V |
---|
367 | |
---|
368 | |
---|
369 | |
---|
370 | |
---|
371 | def conserved_values_to_evolved_values(self, q_cons, q_evol): |
---|
372 | """Mapping between conserved quantities and the evolved quantities. |
---|
373 | Used where we have a boundary condition which works with conserved |
---|
374 | quantities and we now want to use them for the new well balanced |
---|
375 | code using the evolved quantities |
---|
376 | |
---|
377 | Typically the old boundary condition will set the values in q_cons, |
---|
378 | |
---|
379 | q_evol on input will have the values of the evolved quantities at the |
---|
380 | edge point (useful as it provides values for evlevation). |
---|
381 | """ |
---|
382 | |
---|
383 | wc = q_cons[0] |
---|
384 | uhc = q_cons[1] |
---|
385 | vhc = q_cons[2] |
---|
386 | |
---|
387 | we = q_evol[0] |
---|
388 | uhe = q_evol[1] |
---|
389 | vhe = q_evol[2] |
---|
390 | |
---|
391 | he = q_evol[3] |
---|
392 | be = q_evol[4] |
---|
393 | ue = q_evol[5] |
---|
394 | ve = q_evol[6] |
---|
395 | |
---|
396 | |
---|
397 | hc = wc - be |
---|
398 | |
---|
399 | if hc <= 0.0: |
---|
400 | hc = 0.0 |
---|
401 | uc = 0.0 |
---|
402 | vc = 0.0 |
---|
403 | else: |
---|
404 | uc = uhc/hc |
---|
405 | vc = vhc/hc |
---|
406 | |
---|
407 | q_evol[0] = wc |
---|
408 | q_evol[1] = uhc |
---|
409 | q_evol[2] = vhc |
---|
410 | |
---|
411 | q_evol[3] = hc |
---|
412 | q_evol[4] = be |
---|
413 | q_evol[5] = uc |
---|
414 | q_evol[6] = vc |
---|
415 | |
---|
416 | |
---|
417 | return q_evol |
---|
418 | |
---|
419 | |
---|
420 | ################################################################################ |
---|
421 | # Standard forcing terms |
---|
422 | ################################################################################ |
---|
423 | |
---|
424 | def swb_gravity(domain): |
---|
425 | """Apply gravitational pull in the presence of bed slope |
---|
426 | Wrapper calls underlying C implementation |
---|
427 | """ |
---|
428 | |
---|
429 | from swb_domain_ext import gravity_c |
---|
430 | |
---|
431 | #print "Using swb gravity" |
---|
432 | |
---|
433 | xmom_update = domain.quantities['xmomentum'].explicit_update |
---|
434 | ymom_update = domain.quantities['ymomentum'].explicit_update |
---|
435 | |
---|
436 | stage = domain.quantities['stage'] |
---|
437 | elevation = domain.quantities['elevation'] |
---|
438 | |
---|
439 | |
---|
440 | stage = stage.vertex_values |
---|
441 | elevation = elevation.vertex_values |
---|
442 | |
---|
443 | points = domain.get_vertex_coordinates() |
---|
444 | |
---|
445 | gravity_c(domain.g, stage, elevation, points, xmom_update, ymom_update) |
---|