Ignore:
Timestamp:
Apr 10, 2006, 5:20:59 PM (17 years ago)
Author:
sexton
Message:

updating working documents

File:
1 edited

Legend:

Unmodified
Added
Removed
  • documentation/experimentation/smf.tex

    r2681 r2687  
    1616
    1717\usepackage{lscape} %landcape pages support
     18%\input{definitions}
    1819
    1920\title{Application of SMF surface elevation function in inundation modelling}
     
    5556the system volume is conserved. As a result,
    5657
    57 $$\kappa' = {\rm erf} ( (x - x0)/ \sqrt \lambda_0 ) /
    58 {\rm erf} ( (x - \Delta x - x0)/ \sqrt \lambda_0 )]_{x_min}^{x_max}$$
     58$$\kappa' = [{\rm erf} ( (x - x_0)/ \sqrt \lambda_0 ) /
     59{\rm erf} ( (x - \Delta x - x_0)/ \sqrt \lambda_0 )]_{x_{\rm
     60min}}^{x_{\rm max}} \ .$$
    5961
    60 \noindent with $\kappa' \ge 1$ for $\Delta x \ge 0$. Figure 2 in [1]
    61 could then be reproduced for appropriate values of $\kappa'$ to
     62\noindent The relationship between $\kappa$ and $\Delta_x$ can be
     63seen in Figure \ref{fig:vol_cons} where $\kappa$ approaches $\inf$
     64quickly.Additionally, it is not possible for $\kappa' = 0.83$ as
     65shown in Figure 2 of [1] as {\rm erf(x)} = 1 for ${\rm abs} x >
     665.93$. For the example described in Figures 2 and 3 of [1], whilst
     67$\kappa'$ is technically less than 1 for $\Delta x < 5$ it is
     68effectively equal to 1 for $0 \le \Delta x \approx 5$.
     69
     70
     71Figure 2 in [1]
     72could then be reproduced for appropriate values of $\kappa'$ and $\Delta_x$ to
    6273ensure conservation of mass within the system. Using the above
    6374formulation, the values of interest shown in Figure 2 of [1] would
    64 be ($\kappa', \Delta x) = (1,0) and (1.2, 0.0167)$. This function
    65 becomes unbounded for small $\Delta x $ thereby limiting both
    66 parameters.
     75be ($\kappa', \Delta x) = (1,2), (1,4), (1.2, 13.48)$ and shown in
     76Figure \ref{fig:eta_vary}.
    6777
    68 %\caption Relationship between \kappa' and \delta x to ensure volume
    69 %conservation
     78
     79
     80\begin{figure}[hbt]
     81
     82  %\centerline{ \includegraphics[width=75mm, height=75mm]{volume_conservation.ps}}
     83
     84  \caption{Relationship between $\kappa'$ and $\Delta x$ to ensure volume conservation.}
     85  \label{fig:vol_cons}
     86\end{figure}
     87
     88\begin{figure}[hbt]
     89
     90  %\centerline{ \includegraphics[width=75mm, height=75mm]{redo_figure.ps}}
     91
     92  \caption{Surface elevation functions for
     93($\kappa', \Delta x) = (1,2), (1,4), (1.2, 13.48)$.}
     94  \label{fig:eta_vary}
     95\end{figure}
     96
    7097
    7198 {\bf TO DO:} Need a discussion in here on whether the
     
    81108recast as
    82109
    83 $$\kappa'  \approx {\rm erf} ( (x - x0)/ \sqrt\lambda_0 ) / {\rm erf} ( (x - 2 x0
     110$$\kappa'  \approx {\rm erf} ( (x - x_0)/ \sqrt\lambda_0 ) / {\rm erf} ( (x - 2 x_0
    84111- x_g)/ \sqrt \lambda_0 )$$
    85112
Note: See TracChangeset for help on using the changeset viewer.