Changeset 2687 for documentation/experimentation/smf.tex
- Timestamp:
- Apr 10, 2006, 5:20:59 PM (17 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
documentation/experimentation/smf.tex
r2681 r2687 16 16 17 17 \usepackage{lscape} %landcape pages support 18 %\input{definitions} 18 19 19 20 \title{Application of SMF surface elevation function in inundation modelling} … … 55 56 the system volume is conserved. As a result, 56 57 57 $$\kappa' = {\rm erf} ( (x - x0)/ \sqrt \lambda_0 ) / 58 {\rm erf} ( (x - \Delta x - x0)/ \sqrt \lambda_0 )]_{x_min}^{x_max}$$ 58 $$\kappa' = [{\rm erf} ( (x - x_0)/ \sqrt \lambda_0 ) / 59 {\rm erf} ( (x - \Delta x - x_0)/ \sqrt \lambda_0 )]_{x_{\rm 60 min}}^{x_{\rm max}} \ .$$ 59 61 60 \noindent with $\kappa' \ge 1$ for $\Delta x \ge 0$. Figure 2 in [1] 61 could then be reproduced for appropriate values of $\kappa'$ to 62 \noindent The relationship between $\kappa$ and $\Delta_x$ can be 63 seen in Figure \ref{fig:vol_cons} where $\kappa$ approaches $\inf$ 64 quickly.Additionally, it is not possible for $\kappa' = 0.83$ as 65 shown in Figure 2 of [1] as {\rm erf(x)} = 1 for ${\rm abs} x > 66 5.93$. For the example described in Figures 2 and 3 of [1], whilst 67 $\kappa'$ is technically less than 1 for $\Delta x < 5$ it is 68 effectively equal to 1 for $0 \le \Delta x \approx 5$. 69 70 71 Figure 2 in [1] 72 could then be reproduced for appropriate values of $\kappa'$ and $\Delta_x$ to 62 73 ensure conservation of mass within the system. Using the above 63 74 formulation, the values of interest shown in Figure 2 of [1] would 64 be ($\kappa', \Delta x) = (1,0) and (1.2, 0.0167)$. This function 65 becomes unbounded for small $\Delta x $ thereby limiting both 66 parameters. 75 be ($\kappa', \Delta x) = (1,2), (1,4), (1.2, 13.48)$ and shown in 76 Figure \ref{fig:eta_vary}. 67 77 68 %\caption Relationship between \kappa' and \delta x to ensure volume 69 %conservation 78 79 80 \begin{figure}[hbt] 81 82 %\centerline{ \includegraphics[width=75mm, height=75mm]{volume_conservation.ps}} 83 84 \caption{Relationship between $\kappa'$ and $\Delta x$ to ensure volume conservation.} 85 \label{fig:vol_cons} 86 \end{figure} 87 88 \begin{figure}[hbt] 89 90 %\centerline{ \includegraphics[width=75mm, height=75mm]{redo_figure.ps}} 91 92 \caption{Surface elevation functions for 93 ($\kappa', \Delta x) = (1,2), (1,4), (1.2, 13.48)$.} 94 \label{fig:eta_vary} 95 \end{figure} 96 70 97 71 98 {\bf TO DO:} Need a discussion in here on whether the … … 81 108 recast as 82 109 83 $$\kappa' \approx {\rm erf} ( (x - x 0)/ \sqrt\lambda_0 ) / {\rm erf} ( (x - 2 x0110 $$\kappa' \approx {\rm erf} ( (x - x_0)/ \sqrt\lambda_0 ) / {\rm erf} ( (x - 2 x_0 84 111 - x_g)/ \sqrt \lambda_0 )$$ 85 112
Note: See TracChangeset
for help on using the changeset viewer.