Changeset 2844


Ignore:
Timestamp:
May 11, 2006, 2:15:18 PM (19 years ago)
Author:
sexton
Message:

updates

File:
1 edited

Legend:

Unmodified
Added
Removed
  • documentation/experimentation/smf.tex

    r2843 r2844  
    1 
    21\documentclass[reqno]{article}
     2%\documentstyle{letter}
    33\usepackage{ae} % or {zefonts}
    44\usepackage[T1]{fontenc}
     
    2525\advance\textwidth -2.5in
    2626\setstretch{1.5}
     27\parindent 0pt
     28\parskip 2pt
    2729
    2830%\title{Application of SMF surface elevation function in inundation modelling}
     
    3335%\maketitle
    3436
    35 \noindent May 2006
     37May 2006
    3638
    37 \noindent Dr Phil Watts
     39Dr Phil Watts
    3840
    39 \noindent Applied Fluids Engineering
     41Applied Fluids Engineering
    4042
    41 \noindent Long Beach California
     43Long Beach California
    4244
    43 \noindent USA
     45USA
    4446
    45 \noindent phil.watts@appliedfluids.com
     47phil.watts@appliedfluids.com
    4648
    47 \noindent Dear ,
     49Dear Phil,
     50\parindent 15pt
    4851
    4952{\bf Ref: Application of sediment mass failure surface elevation function
     
    6568
    6669The risks posed by tsunamis is one of the natural hazards areas which
    67 the RRG is investigating. GA can model the propogation of an event
     70the RRG is investigating. GA can model the propagation of an event
    6871generated through a submarine earthquake
    6972through to inundation ashore. Currently, we are
    7073employing the Method of Splitting Tsunami (MOST) [1] for the event
    71 and subsequent propogation in deep water, and then use ANUGA to
     74and subsequent propagation in deep water, and then use ANUGA to
    7275propagate the resultant waves in shallow water and onshore.
    7376
     
    8083A recent tsunami inundation study called for the tsunami source to
    8184be a slump and as such, we implemented the surface elevation
    82 function as described in equation 14 of Watts et al 2005, [3].
    83 Which brings us to the reason for contacting you as we have two questions.
     85function as described in equation 14 of Watts et al 2005, [3]. The reason
     86then for our contact is that we have two questions.
    8487
    8588{\bf Question 1:}   Is there a physical explanation to why the volume
     
    116119
    117120
    118 \begin{figure}[hbt]
     121\begin{figure}
    119122
    120123  \centerline{ \includegraphics[width=100mm, height=75mm]{volume_conservation.png}}
     
    158161function, $\eta(x,y)$.
    159162
     163\parindent 0pt
     164
    160165We look forward to your response on these questions.
    161166
     
    166171Risk Research Group, Geoscience Australia.
    167172
    168 \noindent {\bf References}
     173{\bf References}
    169174
    170 \noindent [1]
     175[1]
    171176Titov, V.V., and F.I. Gonzalez (1997), Implementation and testing of
    172177the Method of Splitting Tsunami (MOST) model, NOAA Technical Memorandum
    173178ERL PMEL-112.
    174179
    175 \noindent
    176180[2] Nielsen, O., S. Robers, D. Gray, A. McPherson, and A. Hitchman (2005)
    177181Hydrodynamic modelling of coastal inundation, MODSIM 2005 International
    178182Congress on Modelling and Simulation. Modelling and Simulation Society
    179 of Australian and New Zealand, 518-523, URL:
     183of Australian and New Zealand, 518-523, \newline URL:
    180184http://www.msanz.org.au/modsim05/papers/nielsen.pdf
    181185
    182 \noindent
    183186[3] Watts, P., Grilli, S.T., Tappin, D.R. and Fryer, G.J., 2005,
    184187Tsunami generation by submarine mass failure Part II: Predictive
     
    186189Ocean Engineering, 131, 298 - 310.
    187190
    188 \noindent
    189191[4] Grilli, S.T. and Watts, P., 2005, Tsunami generation by
    190192submarine mass failure Part I: Modeling, experimental validation,
     
    192194Ocean Engineering, 131, 283 - 297.
    193195
    194 
    195 
    196196\end{document}
Note: See TracChangeset for help on using the changeset viewer.