Changeset 3252


Ignore:
Timestamp:
Jun 28, 2006, 6:39:06 PM (18 years ago)
Author:
sexton
Message:
 
Location:
production/onslow_2006
Files:
1 added
1 deleted
15 edited

Legend:

Unmodified
Added
Removed
  • production/onslow_2006/compare_timeseries.py

    r3190 r3252  
    2222
    2323# User defined inputs
     24# for comparison between MOST and ANUGA
    2425production_dirs = {'20060515_001733': '100m boundary',
    2526                   '20060530_102753': '50m boundary',
    2627                   'MOST': 'MOST'}
    2728
    28 gauge_map = 'onslow_boundary_gauges.png'
     29gauge_map = 'onslow_boundary_gauges.png' # MOST/ANUGA comparison
    2930
    3031plot_quantity = ['stage', 'speed']
     
    5556latex_output.append(texname)
    5657
     58# for MOST/ANUGA comparison
    5759from shutil import copy, move
    5860copy ('report' + sep + texname + '.tex', project.comparereportdir + sep + texname + '.tex')
     
    6062
    6163# Start report generation
     64# for MOST/ANUGA comparison
    6265input_name = project.comparereportdir + sep + '50100MOSTcomparison_onslow.tex'
    6366fid = open(input_name, 'w')
     67
    6468
    6569# Generate latex output for location points
  • production/onslow_2006/get_timeseries.py

    r2885 r3252  
    1212 
    1313
    14 time_dir = "20060419_071046"
     14time_dir = "20060426_004129" #"20060419_071046"
    1515directory = project.outputdir
    1616swwfile = directory + time_dir +sep + "source.sww"
  • production/onslow_2006/make_report.py

    r3241 r3252  
    7070report_title = 'Tsunami impact modelling for the North West shelf: %s' %scenario_name.title()
    7171
     72# DTED data
    7273#production_dirs = {'20060426_004129': '1.5 AHD',
    7374#                   '20060426_004237': '-1.5 AHD',
    7475#                   '20060515_001733': '0 AHD'}
    75 
    76 production_dirs = {'20060515_001733': '0 AHD'}
    77 
    78 #max_maps = {'1.5 AHD': 'HAT_map',
    79 #            '-1.5 AHD': 'LAT_map',
    80 #            '0 AHD': 'MSL_map'}
    81 
    82 max_maps = {'0 AHD': 'MSL_map'}
    83 
    8476#damage_maps = {'1.5 AHD': 'HAT_damage',
    8577#               '-1.5 AHD': 'LAT_damage',
    8678#               '0 AHD': 'MSL_damage'}
    8779
     80production_dirs = {'20060515_001733': '0 AHD'}
     81
     82max_maps = {'0 AHD': 'MSL_map'}
     83
     84# WA DLI data
     85#production_dirs = {'20060426_004129': 'HAT',
     86#                   '20060426_004237': 'LAT',
     87#                   '20060515_001733': 'MSL'}
     88
     89#max_maps = {'HAT': 'HAT_map',
     90#            'LAT': 'LAT_map',
     91#            'MSL': 'MSL_map'}
     92
    8893gauge_map = 'onslow_gauge_map.jpg'
     94
     95compare_output = 'compare_output_datasets'
    8996
    9097# Create sections and graphs for each designated production directory
     
    269276
    270277s = """
    271    \section{Issues}
     278   \section{Impact due to data accuracy}
    272279     \input{discussion}
    273280     \label{sec:issues}
     
    284291   \section{Time series}
    285292     \label{sec:timeseries}
    286      
     293"""
     294fid.write(s)
     295
     296s = '\input{%s} \n \clearpage \n \n' %latex_output[0]
     297fid.write(s)
     298
     299s="""
    287300   \section{Damage modelling inputs}
    288301     \label{sec:damageinputs}
    289302     \input{damage_inputs}
    290 """
    291 fid.write(s)
    292 
    293 s = '\input{%s} \n \clearpage \n \n' %latex_output[0]
    294 fid.write(s)
    295      
     303
     304        \section{Time series}
     305     \label{sec:timeseriesdted}
     306
     307"""
     308fid.write(s)
     309
     310s = '\input{%s} \n \clearpage \n \n' %compare_output
     311fid.write(s)
     312
    296313s = '\end{document}'
    297314fid.write(s)
  • production/onslow_2006/report/HAT_damage.tex

    r3064 r3252  
    11\begin{figure}[hbt]
    22%\centerline{ \includegraphics[width=100mm, height=75mm]{../report_figures/.jpg}} 
    3 \caption{Damage modelling for 1.5 AHD for Onslow region.} 
     3\caption{Damage modelling for the HAT scenario for Onslow region.} 
    44\label{fig:HAT_damage}
    55\end{figure}
  • production/onslow_2006/report/HAT_map.tex

    r3169 r3252  
    11\begin{figure}[hbt]
    22%\centerline{ \includegraphics[width=100mm, height=75mm]{../report_figures/.jpg}} 
    3 \caption{Maximum inundation map for 1.5m AHD for Onslow region.} 
     3\caption{Maximum inundation map for the HAT scenario for Onslow region.} 
    44\label{fig:HAT_max_inundation}
    55\end{figure}
  • production/onslow_2006/report/LAT_damage.tex

    r3064 r3252  
    11\begin{figure}[hbt]
    22%\centerline{ \includegraphics[width=100mm, height=75mm]{../report_figures/.jpg}} 
    3 \caption{Damage modelling for -1.5 AHD for Onslow region.} 
     3\caption{Damage modelling for the LAT scenario for Onslow region.} 
    44\label{fig:LAT_damage}
    55\end{figure}
  • production/onslow_2006/report/LAT_map.tex

    r3169 r3252  
    11\begin{figure}[hbt]
    22%\centerline{ \includegraphics[width=100mm, height=75mm]{../report_figures/.jpg}} 
    3 \caption{Maximum inundation map for -1.5m AHD for Onslow region.} 
     3\caption{Maximum inundation map for the LAT scenario for Onslow region.} 
    44\label{fig:LAT_max_inundation}
    55\end{figure}
  • production/onslow_2006/report/MSL_damage.tex

    r3064 r3252  
    11\begin{figure}[hbt]
    22%\centerline{ \includegraphics[width=100mm, height=75mm]{../report_figures/.jpg}} 
    3 \caption{Damage modelling for 0 AHD for Onslow region.} 
     3\caption{Damage modelling for the MSL scenario for Onslow region.} 
    44\label{fig:MSL_damage}
    55\end{figure}
  • production/onslow_2006/report/MSL_map.tex

    r3169 r3252  
    11\begin{figure}[hbt]
    22%\centerline{ \includegraphics[width=100mm, height=75mm]{../report_figures/.jpg}} 
    3 \caption{Maximum inundation map for 0m AHD for Onslow region.} 
     3\caption{Maximum inundation map for the MSL scenario for Onslow region.} 
    44\label{fig:MSL_max_inundation}
    55\end{figure}
  • production/onslow_2006/report/anuga.tex

    r3235 r3252  
    2727\end{itemize}
    2828
    29 The initial condition used for this scenario is 0m Australian Height Datum
    30 which is approximately equal to Mean Sea Level.
     29As part of the CRA, it was decided to provide results for the
     30extremes of the tidal regimes to understand the potential range of impacts
     31from the event. The Highest Astronomical Tide (HAT) and Lowest
     32Astronomical Tide (LAT) are defined as 1.5m AHD and -1.5m AHD
     33respectively for Onslow, \cite{antt:06}, with Mean Sea Level approximately
     34equal to 0m Australian Height Datum. These values are tidal
     35predictions based on continous tidal observations from Standard Ports
     36over a period of
     37at least one year, with the Australian Hydrographic Service
     38recommending this be extended to three years to capture
     39changes to the mean sea level. Onslow is listed as
     40a Standard Port. As an aside, current work at GA is
     41extracting information from LANDSAT imagery to reconstruct the
     42tidal variations for various WA locations. Future modelling of
     43these areas will incorporate this information.
     44
     45
     46The initial conditions used for this scenario is then MSL, HAT and LAT.
    3147The dynamics of
    3248tidal effects (that is, the changes in water height over time for
  • production/onslow_2006/report/damage.tex

    r3242 r3252  
    7575\begin{table}[h]
    7676\label{table:damageoutput}
    77 \caption{Residential damage sustained for the 0m AHD scenario.}
     77\caption{Residential damage sustained for the MSL, HAT and LAT scenarios.}
    7878\begin{center}
    79 \begin{tabular}{|l|l|l|l|l|l|}\hline
    80 Houses  & Houses  & Structural & Repair Cost \% & Contents & Contents Loss \% \\
    81 Inundation & Collapsed & Repair Cost
     79\begin{tabular}{|l|l|l|l|l|l|l|}\hline
     80&Houses  & Houses  & Structural & Repair Cost \% & Contents & Contents Loss \% \\
     81&Inundated & Collapsed & Repair Cost
    8282& of Total Value & Losses & of Total Value \\ \hline
    83 54 & 1 & \$5,317,783 &  8.8 \% & \$11,592,602 & 13.6 \% \\ \hline
     83MSL &54 & 1 & \$5,317,783 &  8.8 \% & \$11,592,602 & 13.6 \% \\ \hline
     84HAT & & & & & & \\ \hline
     85LAT & & & & & & \\ \hline
    8486\end{tabular}
    8587\end{center}
     
    8890\begin{table}[h]
    8991\label{table:injuries}
    90 \caption{Injuries sustained for the 0m AHD scenario.}
     92\caption{Injuries sustained for the MSL, HAT and LAT scenarios.}
    9193\begin{center}
    92 \begin{tabular}{|l|l|l|l|l|}\hline
    93 Minor & Moderate & Serious & Fatal \\ \hline
    94 43 & 11 & 6 & 20 \\ \hline
     94\begin{tabular}{|l|l|l|l|l|l|}\hline
     95&Minor & Moderate & Serious & Fatal \\ \hline
     96MSL &43 & 11 & 6 & 20 \\ \hline
     97HAT & & & & \\ \hline
     98LAT & & & & \\ hline
    9599\end{tabular}
    96100\end{center}
  • production/onslow_2006/report/data.tex

    r3188 r3252  
    1919drainage. In addition, the Department of Land Information (DLI) has provided a
    202020m Digital Elevation Model (DEM) and orthophotography
    21 covering the NW Shelf. However, the 30m
    22 DTED Level 2 data is ``bare earth'' whereas the DLI data is distorted by
    23 vegetation
    24 and buildings so we have chosen to use the DTED as the onshore
    25 topographic data set. It is also important to note that the DEM does
    26 not include features such as rock walls, berths etc.
     21covering the NW Shelf. The DTED Level 2 data is ``bare earth'' with
     22the DLI data is distored by vegetation and buildings. The WA DLI data
     23is used for the simulation results which follow, due to the
     24increased accuracy of the DLI data. Further discussion on the comparison
     25between these data sets is deferred to Section \ref{sec:issues}.
     26%However, the 30m
     27%DTED Level 2 data is ``bare earth'' whereas the DLI data is distorted by
     28%vegetation
     29%and buildings so we have chosen to use the DTED as the onshore
     30%topographic data set. It is also important to note that the DEM does
     31%not include features such as rock walls, berths etc.
    2732
    2833With respect to the offshore data, the Department of Planning and
     
    3136similar data has been provided for Pt Hedland and Broome by DPI.)
    3237The Australian Hydrographic Office (AHO) has supplied extensive
    33 fairsheet data which has also been utilised.
     38fairsheet data which has also been utilised.
     39The coastline has been generated from the DIGO DTED Level 2 and modified
     40using the aerial photography and two detailed surveys provided
     41by WA Department of Planning and Infrastructure. {\bf confirm}
     42Section \ref{sec:metadata} provides more details and metadata for data
     43used for this study.
     44Table \ref{table:data} summarises the available data for this study.
    3445
    35 In summary,
    36 
     46\begin{table}
     47\caption{AVailable data for the North West shelf tsunami inundation studies.}
     48\label{table:data}
    3749\begin{center}
    3850\begin{tabular}{|l|l|}\hline
     
    4557\end{center}
    4658
    47 The coastline has been generated from the DIGO DTED Level 2 and modified
    48 using the aerial photography and two detailed surveys provided
    49 by WA Department of Planning and Infrastructure.
    5059
    5160%\begin{figure}[hbt]
     
    5968%\end{figure}
    6069
    61 Section \ref{sec:metadata} provides more details and metadata for data used for
    62 this study.
    6370
     71
  • production/onslow_2006/report/discussion.tex

    r3240 r3252  
     1%As part of the CRA, it was decided to provide results for the
     2%extremes of the tidal regimes to understand the potential range of impacts
     3%from the event. The Highest Astronomical Tide (HAT) and Lowest
     4%Astronomical Tide (LAT) are defined as 1.5m AHD and -1.5m AHD
     5%respectively for Onslow, \cite{antt:06}. These values are tidal
     6%predictions based on continous tidal observations from Standard Ports
     7%over a period of
     8%at least one year, with the Australian Hydrographic Service
     9%recommending this be extended to three years to capture
     10%changes to the mean sea level. Onslow is listed as
     11%a Standard Port.
    112
    2 As part of the CRA, it was decided to provide results for the
    3 extremes of the tidal regimes to understand the potential range of impacts
    4 from the event. The Highest Astronomical Tide (HAT) and Lowest
    5 Astronomical Tide (LAT) are defined as 1.5m AHD and -1.5m AHD
    6 respectively for Onslow, \cite{antt:06}. These values are tidal
    7 predictions based on continous tidal observations from Standard Ports
    8 over a period of
    9 at least one year, with the Australian Hydrographic Service
    10 recommending this be extended to three years to capture
    11 changes to the mean sea level. Onslow is listed as
    12 a Standard Port.
     13%As an aside, current work at GA is
     14%extracting information from LANDSAT imagery to reconstruct the
     15%tidal variations for various WA locations. Future modelling of
     16%these areas will incorporate this information.
    1317
    14 Figure \ref{fig:contours} shows the contour lines for
    15 HAT, MSL and LAT for Onslow.
    16 It is evident from this figure that the extent of the tidal
    17 inundation is exaggerated which is due to
    18 short comings with the digital elevation model (DEM). The DEM has been
     18Initial simulations for this study used the DIGO DTED Level 2 data
     19(see Section \sec:data} due to the fact it is
     20``bare earth'', whereas the DLI data is distorted by
     21vegetation and buildings.
     22Figure \ref{fig:contours_dted} shows the contour lines for
     23HAT, MSL and LAT for Onslow using the DTED data.
     24It is evident from Figure \ref{fig:contours_dted}
     25that the extent of the tidal inundation is exaggerated which is due to
     26short comings with the digital elevation model (DEM) created from
     27the DTED data. The DEM has been
    1928derived from 20m contour lines. {\bf Need some words from hamish here.}
    20 
    21 As an aside, current work at GA is
    22 extracting information from LANDSAT imagery to reconstruct the
    23 tidal variations for various WA locations. Future modelling of
    24 these areas will incorporate this information.
     29As a result, we turned to the WA DLI onshore data to present
     30the results in this report. Figure \ref{fig:contours_dli} shows
     31the contour lines for HAT, MSL and LAT for Onslow using the WA DLI data.
     32It is obvious that there are significant differences in each DEM with
     33secondary information regarding total station surveys and the knowledge
     34of the HAT contour line pointing to increased confidence in the WA DLI
     35data over the DTED data for use in inundation modelling.
    2536
    2637\begin{figure}[hbt]
    2738
    2839  \centerline{ \includegraphics[width=150mm, height=100mm]
    29 {../report_figures/contours.jpg}}
     40{../report_figures/contours_dted.jpg}}
    3041
    31   \caption{Onslow regions showing the 1.5m AHD, 0m AHD and -1.5m AHD contour lines.}
    32   \label{fig:contours}
     42  \caption{Onslow region showing the -1.5m AHD (LAT), 0m AHD (MSL)
     43 and -1.5m AHD (LAT) contour lines.}
     44  \label{fig:contours_dted}
    3345\end{figure}
     46
     47\begin{figure}[hbt]
     48
     49  \centerline{ \includegraphics[width=150mm, height=100mm]
     50{../report_figures/contours_dli.jpg}}
     51
     52  \caption{Onslow region showing the -1.5m AHD (LAT), 0m AHD (MSL)
     53and -1.5m AHD (LAT) contour lines.}
     54  \label{fig:contours_dli}
     55\end{figure}
     56
     57The purpose of this section then is to
     58show the differences to the impact ashore when each data set is used
     59to demonstrate the importance of using the best possible data set. As
     60before, we show the time history of the water's stage and velocity for the
     61point locations in Table \ref{table:locations} for the DTED data.
     62These results are shown in Section \ref{sec:timeseriesdted}.
     63
  • production/onslow_2006/report/introduction.tex

    r3242 r3252  
    3333The scenario used for this study has an unknown
    3434return period, however it
    35 can be classed as a plausible event, see Section \ref{sec:tsunamiscenario}.
     35is a plausible event, see Section \ref{sec:tsunamiscenario}.
    3636Future studies
    3737will present a series of scenarios for a range of return periods to
  • production/onslow_2006/report/modelling_methodology.tex

    r3240 r3252  
    2626in deeper water where the wavelength is longer.
    2727Non-linear models however require much finer resolution in order to capture
    28 the complexity associated with the water flow from off to onshore. By contrast, the data
     28the complexity associated with the water flow from offshore
     29to onshore. By contrast, the data
    2930resolution required is typically of the order of tens of metres.
    3031The model ANUGA \cite{ON:modsim} is suitable for this type of non-linear
    3132modelling.
    3233Using a non-linear model capable of resolving local bathymetric effects
    33 and runup using detailed elevation data will require much more computational
     34and runup using detailed elevation data will require more computational
    3435resources than the typical hazard model making it infeasible to use it
    3536for the entire, end-to-end, modelling.
    3637
    37 We have adopted a hybrid approach whereby we use the output from the 
    38 hazard model MOST as input to ANUGA at the seaward boundary of its study area.
     38We have adopted a hybrid approach whereby the output from the 
     39hazard model MOST is used as input to ANUGA at the seaward boundary of its study area.
    3940In other words, the output of MOST serves as boundary condition for the
    4041ANUGA model. In this way, we restrict the computationally intensive part only to
Note: See TracChangeset for help on using the changeset viewer.