Ignore:
Timestamp:
Nov 17, 2006, 4:30:18 PM (17 years ago)
Author:
ole
Message:

Prettyfied docstring

File:
1 edited

Legend:

Unmodified
Added
Removed
  • anuga_core/source/anuga/shallow_water/shallow_water_domain.py

    r4004 r4005  
    11"""Finite-volume computations of the shallow water wave equation.
    22
    3 Title: ANGUA shallow_water_domain - 2D triangular domains for finite-volume computations of
    4 the shallow water wave equation.
     3Title: ANGUA shallow_water_domain - 2D triangular domains for finite-volume
     4       computations of the shallow water wave equation.
    55
    66
     
    99        Duncan Gray (Duncan.Gray@ga.gov.au), etc
    1010
    11 
    1211CreationDate: 2004
    1312
    1413Description:
    15 
    16 This module contains a specialisation of class Domain from module domain.py
    17 consisting of methods specific to the Shallow Water Wave Equation
    18 
    19 
    20 U_t + E_x + G_y = S
    21 
    22 where
    23 
    24 U = [w, uh, vh]
    25 E = [uh, u^2h + gh^2/2, uvh]
    26 G = [vh, uvh, v^2h + gh^2/2]
    27 S represents source terms forcing the system
    28 (e.g. gravity, friction, wind stress, ...)
    29 
    30 and _t, _x, _y denote the derivative with respect to t, x and y respectively.
    31 
    32 The quantities are
    33 
    34 symbol    variable name    explanation
    35 x         x                horizontal distance from origin [m]
    36 y         y                vertical distance from origin [m]
    37 z         elevation        elevation of bed on which flow is modelled [m]
    38 h         height           water height above z [m]
    39 w         stage            absolute water level, w = z+h [m]
    40 u                          speed in the x direction [m/s]
    41 v                          speed in the y direction [m/s]
    42 uh        xmomentum        momentum in the x direction [m^2/s]
    43 vh        ymomentum        momentum in the y direction [m^2/s]
    44 
    45 eta                        mannings friction coefficient [to appear]
    46 nu                         wind stress coefficient [to appear]
    47 
    48 The conserved quantities are w, uh, vh
     14    This module contains a specialisation of class Domain from
     15    module domain.py consisting of methods specific to the
     16    Shallow Water Wave Equation
     17
     18    U_t + E_x + G_y = S
     19
     20    where
     21
     22    U = [w, uh, vh]
     23    E = [uh, u^2h + gh^2/2, uvh]
     24    G = [vh, uvh, v^2h + gh^2/2]
     25    S represents source terms forcing the system
     26    (e.g. gravity, friction, wind stress, ...)
     27
     28    and _t, _x, _y denote the derivative with respect to t, x and y
     29    respectively.
     30
     31
     32    The quantities are
     33
     34    symbol    variable name    explanation
     35    x         x                horizontal distance from origin [m]
     36    y         y                vertical distance from origin [m]
     37    z         elevation        elevation of bed on which flow is modelled [m]
     38    h         height           water height above z [m]
     39    w         stage            absolute water level, w = z+h [m]
     40    u                          speed in the x direction [m/s]
     41    v                          speed in the y direction [m/s]
     42    uh        xmomentum        momentum in the x direction [m^2/s]
     43    vh        ymomentum        momentum in the y direction [m^2/s]
     44
     45    eta                        mannings friction coefficient [to appear]
     46    nu                         wind stress coefficient [to appear]
     47
     48    The conserved quantities are w, uh, vh
    4949
    5050Reference:
    51 Catastrophic Collapse of Water Supply Reservoirs in Urban Areas,
    52 Christopher Zoppou and Stephen Roberts,
    53 Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999
    54 
    55 Hydrodynamic modelling of coastal inundation.
    56 Nielsen, O., S. Roberts, D. Gray, A. McPherson and A. Hitchman
    57 In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International Congress on
    58 Modelling and Simulation. Modelling and Simulation Society of Australia and
    59 New Zealand, December 2005, pp. 518-523. ISBN: 0-9758400-2-9.
    60 http://www.mssanz.org.au/modsim05/papers/nielsen.pdf
    61 
    62 
    63 SeeAlso: TRAC administration of ANUGA (User Manuals etc) at https://datamining.anu.edu.au/anuga and
    64 Revision control
    65 $HeadURL$
     51    Catastrophic Collapse of Water Supply Reservoirs in Urban Areas,
     52    Christopher Zoppou and Stephen Roberts,
     53    Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999
     54
     55    Hydrodynamic modelling of coastal inundation.
     56    Nielsen, O., S. Roberts, D. Gray, A. McPherson and A. Hitchman
     57    In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International Congress on
     58    Modelling and Simulation. Modelling and Simulation Society of Australia and
     59    New Zealand, December 2005, pp. 518-523. ISBN: 0-9758400-2-9.
     60    http://www.mssanz.org.au/modsim05/papers/nielsen.pdf
     61
     62
     63SeeAlso:
     64    TRAC administration of ANUGA (User Manuals etc) at
     65    https://datamining.anu.edu.au/anuga and Subversion repository at
     66    $HeadURL$
    6667
    6768Constraints: See GPL license in the user guide
    68 
    6969Version: 1.0 ($Revision$)
    7070ModifiedBy:
    71 $Author$
    72 $Date$
    73 
    74 $LastChangedBy$
    75 $LastChangedDate$
    76 $LastChangedRevision$
    77 
     71    $Author$
     72    $Date$
    7873
    7974"""
Note: See TracChangeset for help on using the changeset viewer.