Changeset 4134 for anuga_work/production


Ignore:
Timestamp:
Jan 5, 2007, 3:12:45 PM (18 years ago)
Author:
sexton
Message:

report updates - taking Trevor's comments into account for revision of Onslow report

Location:
anuga_work/production
Files:
3 added
2 deleted
16 edited

Legend:

Unmodified
Added
Removed
  • anuga_work/production/dampier_2006/make_report_cipma.py

    r4021 r4134  
    2727* Tsunami scenario
    2828* Data sources
    29 * Inundation model
    3029* Inundation modelling results
    3130* Impact modelling
     
    3433* References
    3534* Appendix: Metadata
     35* Appendix: Inundation model metadata
    3636* Appendix: Time series outputs
    3737
     
    236236##\label{table:locations}
    237237##\\begin{tabular}{|l|l|l|l|}\hline
    238 ##\\bf{Point Name} & \\bf{Easting} & \\bf{Northing} & \\bf{Elevation}\\\\ \hline
     238##\\bf{Point Name} & \\bf{Easting} & \\bf{Northing} & \\bf{Elevation (m)}\\\\ \hline
    239239##"""
    240240##fid.write(s)
     
    298298
    299299    \\appendix
    300    
     300
     301   \section{ANUGA modelling parameters}
     302\label{sec:anugasetup}
     303\input{anuga_setup}
     304
    301305   \section{Metadata}
    302306     \label{sec:metadata}
  • anuga_work/production/dampier_2006/report/anuga_setup.tex

    r4021 r4134  
    7878\begin{tabular}{|l|l|l|}\hline
    7979Mesh & & \hline
    80 & resolution in Region 1 & 500 m$^2$ \hline
    81 & resolution in Region 2 & 2000 m$^2$ \hline
    82 & resolution in Region 3 & 2000 m$^2$ \hline
    83 & remaining resolution & 100 000 m$^2$ \hline
    84 Model parameters & & \hline
    85 & friction & 0
    86 & minimum stored height & 0.1 m \hline
     80& resolution in Region 1 & 500 m$^2$  \\ \hline
     81& resolution in Region 2 & 2000 m$^2$ \\ \hline
     82& resolution in Region 3 & 2000 m$^2$ \\ \hline
     83& remaining resolution & 100 000 m$^2$ \\ \hline
     84Model parameters & & \\ \hline
     85& friction & 0 \\ \hline
     86& minimum stored height & 0.1 m \\ \hline
    8787\end{tabular}
    8888\end{center}
  • anuga_work/production/onslow_2006/make_report.py

    r3514 r4134  
    2525* Tsunami scenario
    2626* Data sources
    27 * Inundation model
     27
    2828* Inundation modelling results
    2929* Impact modelling
     
    3232* References
    3333* Appendix: Metadata
     34* Appendix: Inundation model metadata
    3435* Appendix: Time series outputs
    3536
     
    5354from os import getcwd, sep, altsep, mkdir, access, F_OK
    5455import project
    55 from anuga.pyvolution.util import sww2timeseries, get_gauges_from_file
     56from anuga.abstract_2d_finite_volumes.util import sww2timeseries, get_gauges_from_file
    5657
    5758# Derive scenario name
     
    103104texname, elev_output = sww2timeseries(swwfiles,
    104105                                      project.gauge_filename,
     106                                      #project.gauge_filename_bindi,
    105107                                      production_dirs,
    106108                                      report = True,
     
    202204    \label{sec:data}
    203205    \input{data}
    204    
    205    \section{Inundation model}
    206     \label{sec:anuga}
    207     \input{anuga}
    208     \input{computational_setup}
    209206       
    210207  \section{Inundation modelling results}
     
    222219\label{table:locations}
    223220\\begin{tabular}{|l|l|l|l|}\hline
    224 \\bf{Point Name} & \\bf{Easting} & \\bf{Northing} & \\bf{Elevation}\\\\ \hline
     221\\bf{Point Name} & \\bf{Easting} & \\bf{Northing} & \\bf{Elevation (m)}\\\\ \hline
    225222"""
    226223fid.write(s)
     
    289286
    290287    \\appendix
    291    
     288
     289    \section{ANUGA modelling parameters}
     290    \label{sec:anugasetup}
     291    \input{anuga_setup}
     292
     293\clearpage
     294
    292295   \section{Metadata}
    293296     \label{sec:metadata}
    294297     \input{metadata}
    295298
    296 \pagebreak
     299\clearpage
    297300
    298301   \section{Time series}
    299302     \label{sec:timeseries}
     303     \input{timeseriesdiscussion}
    300304"""
    301305fid.write(s)
  • anuga_work/production/onslow_2006/project.py

    r4063 r4134  
    7474#for MOST
    7575gauge_filename = gaugedir + 'gauge_location_onslow.csv'
     76gauge_filename_bindi = gaugedir + 'gauge_location_bindi.csv'
    7677gauges50 = gaugedir + '50_gauges.xya'
    7778gauge_comparison = gaugedir + 'MOST_comparison_gauges.xya'
  • anuga_work/production/onslow_2006/report/damage_inputs.tex

    r3393 r4134  
    5858spinal column injuries, or crush syndrome. \\ \hline
    5959Fatal
    60 Severity 4      &Instantaneously killed or mortally injured, \\ \hline
     60Severity 4      &Instantaneously killed or mortally injured. \\ \hline
    6161\end{tabular*}
    6262\end{center}
  • anuga_work/production/onslow_2006/report/execsum.tex

    r3404 r4134  
    11This report is being provided to the Fire and Emergency Services Authority
    22(FESA) as part of the Collaborative Research Agreement (CRA)
    3 with Geoscience Australia (GA).
     3with Geoscience Australia (GA), Tsunami Impact Modelling for WA.
    44FESA has recognised the potential vulnerability of the Western Australia
    55coastline to tsunami originating from earthquakes on
     
    1111threat and develop detailed response plans for a range of plausible events.
    1212
    13 This report describes the modelling methodology and initial results
    14 for a specific tsunami-genic event as it impacts the Onslow township
    15 and its surrounds. In particular, maximum inundation maps are shown
     13This report describes the modelling methodology and results
     14for a number of tsunami-genic events with varied return periods
     15as they impact the Onslow region.
     16In particular, maximum inundation maps are shown
    1617and discussed
    1718for the event occurring at mean sea level as well as
     
    2021the numbers of persons affected. The Onslow township has approximately
    2122350 residential structures and a population of around 800.
    22 For this specific event at high tide, approximately
    23 100 houses are inundated with two of those collapsing. Approximately
    24 15-20\% of the population will sustain injuries, including fatalities.
    2523
    26 Future studies
    27 will present a series of scenarios for a range of return periods to
    28 assist FESA in developing appropriate plans for a range of event impacts.
    29 This will also allow an assessment of the relative tsunami risk
     24The results of this study will allow an assessment of the relative tsunami risk
    3025to communities along the NW Shelf of WA.
    3126This report and the decision support tool are the
    32 June 2006 deliverables of the Collaborative Research Agreement,
    33 Tsunami Impact Modelling for WA, between FESA and GA.
     27June 2007 deliverables of the Collaborative Research Agreement
     28between FESA and GA.
    3429
  • anuga_work/production/onslow_2006/report/interpretation.tex

    r3477 r4134  
    1 The main features of the
    2 tsunami wave and resultant inundation ashore is described in this section.
    3 We have
    4 chosen a number of locations to illustrate the features
    5 of the tsunami as it approaches and impacts Onslow.
    6 These locations have been chosen as we believe they would
    7 either be critical
    8 in an emergency situation, (e.g. the hospital and power station) or
    9 effect recovery efforts, (e.g. the airport and docks). These locations
    10 are described in Table \ref{table:locations} and shown in
    11 Figure \ref{fig:points}. The water's stage and speed
    12 at each of these locations are shown
    13 as a function of time in the series of graphs shown in
    14 Appendix \ref{sec:timeseries}. It is assumed that the earthquake is
    15 generated at the beginning of the simulation, i.e. time = 0 minutes.
    16 Stage is defined as the absolute
    17 water level (in metres) relative to AHD
    18 \footnote{For an offshore location such as Beadon Bay West,
    19 the initial water level will be that of the tidal scenario. In the
    20 case of MSL, this water level will be 0. As the tsunami wave moves
    21 through this point, the water height may grow and thus the stage will
    22 represent the amplitude of the wave. For an onshore location such as the
    23 Light Tower, the actual water depth will be the difference between
    24 the stage and the elevation at that point. Therefore, at the beginning
    25 of the simulation, there will be no water onshore and therefore
    26 the stage and the elevation will be identical.}. Both stage and speed
    27 (in metres/second) for
    28 each scenario (HAT, MSL and LAT) are shown
    29 on consistent scales to allow comparison between point locations.
    30 As a useful benchmark, Table \ref{table:speedexamples}
    31 describes typical examples for a range of speeds found in the
    32 simulations.
    33 
    34 \begin{table}[h]
    35 \label{table:speedexamples}
    36 \caption{Examples of a range of velocities.}
    37 \begin{center}
    38 \begin{tabular}{|l|l|}\hline
    39 {\bf Velocity (m/s)} & {\bf Example} \\ \hline
    40 1 & leisurely stroll pace\\ \hline
    41 1.5 & average walking pace \\ \hline
    42 %2 & 100m Olympic male freestyle \\ \hline
    43 %3 & mackeral \\ \hline
    44 4 & average person can maintain running for 1000m \\ \hline
    45 %5 & blue whale \\ \hline
    46 10 & 100m Olympic male sprinter \\ \hline
    47 16 & car travelling in urban zones (60 km/hr) \\ \hline
    48 \end{tabular}
    49 \end{center}
    50 \end{table}
    51 
    52 A tsunami wave typically has a small amplitude and typically travels at 100's of kilometres per hour.
    53 The low amplitude complicates the ability to detect
    54 the wave. As the water depth decreases,
    55 the speed of the wave
    56 decreases and the amplitude grows. Another important feature of tsunamis
    57 is drawdown. This means that the water is seen to retreat from the beaches
    58 before a tsunami wave
    59 impacts that location. Other features
    60 include reflections (where the wave is redirected due to the
    61 influence
    62 of the coast) and shoaling (where the wave's amplitude is amplified
    63 close to the coast due to wave interactions).
    64 These features are seen in these scenarios, and are consistent
    65 for HAT, MSL and LAT.
    66 There is a small wave, followed
    67 by a large drawdown and then a large secondary wave.
    68 
    69 These
    70 features are illustrated in Figure \ref{fig:gaugeBeadonBayeast}
    71 where a small wave can be seen at around 200 mins. For the HAT
    72 case (shown in blue), the amplitude
    73 of the wave at this location is around 0.8 m\footnote{In this
    74 scenario, the initial water level is 1.5 m, which means that
    75 the actual amplitude is the difference between the stage value
    76 and the initial water level; 2.3 - 1.5}.
    77 The drawdown of around 4.3 m (i.e. 2.3 - -2) then occurs at around 230 mins
    78 (i.e. 3.8 hours after the event has been generated), before
    79 the second wave arrives
    80 with an amplitude of around 3.6 m (i.e. 4.1 - 1.5). A further wave
    81 is then evident a short time later (around 255 mins)
    82 which further increases the amplitude to around 5 m (i.e. 6.6 - 1.5).
    83 These features are replicated at each of the offshore points (those
    84 points with negative elevation as shown in Table \ref{table:locations}).
    85 
    86 The wave amplitude is typically greater
    87 for those locations which are in the shallowest water. For example,
    88 the maximum wave amplitude at the Beadon Bay East location
    89 (Figure \ref{fig:gaugeBeadonBayeast}) is over
    90 4.5m where the water depth would normally be 3.56 m. In the
    91 Beadon Bay West location (Figure \ref{fig:gaugeBeadonBaywest})
    92 where the water depth would normally be 4.62 m,
    93 the maximum wave amplitude is much less (around 3 m). The wave amplitude
    94 at the West of Groyne location (Figure \ref{fig:gaugeWestofGroyne})
    95 is not greater than that seen
    96 at the Beadon Bay East location, even though the water depth is
    97 much less, at 2.11m. This is probably due to its proximity
    98 to the groyne\footnote{A groyne is a man made structure to combat
    99 coastal erosion.}
    100 which has impeded the tsunami wave to some degree. However, the
    101 maximum speed found amongst the locations is at the West of Groyne
    102 point which is in the shallowest water.
    103 
    104 The speed of the tsunami sharply increases as it moves onshore. There
    105 is minimal inundation found at the locations chosen, with the Bindi Bindi
    106 community receiving the greatest inundation for all tidal scenarios.
    107 At HAT, the community would receive over 1 m of inundation with
    108 the water moving through the community at approximately 16 m/s. Referring
    109 to Table \ref{table:speedexamples}, a person in this location could
    110 not outrun this water movement. A small amount of water is found
    111 at the hospital (10 cm). Whilst this seems minimal, the water is moving
    112 at around 6 m/s which could dislodge some items if the water was able to enter the hospital.
    113  
    114 The geography of the Onslow area has played a role in offering
    115 some protection to the Onslow community. The tsunami wave is
    116 travelling from the north west of the area. Most of
    117 the inundation along the coast is that which is open to this
    118 direction. 
    119 The sand dunes west of Onslow
    120 appear to have halted this tsunami wave
    121 (see Figure \ref{fig:MSL_max_inundation}) with limited
    122 inundation found on the town's side of the dunes.
    123 The inundation within the community has occurred due to the
    124 wave reflecting from the beach area west of the creek and
    125 returning towards the Onslow town itself. 
    126 There are also sand dunes east of the creek which have also
    127 halted inundation beyond them.
    128 Currently, we do not model changes
    129 to the bathymetry or topography due to effects of the water flow.
    130 Therefore, we do not know whether these sand dunes would withstand the
    131 transmitted energy of the tsunami wave.
    132 
    133 Water features such as rivers, creeks and estuaries also play a role
    134 in the inundation extent.
    135 The tsunami wave penetrates the creek east of Onslow with a wave height
    136 over 2 m at the mouth
    137 (Figure \ref{fig:gaugeBeadonCreekmouth}) for the HAT scenario.
    138 Inundation exceeds 1 m at the Beadon Creek south of dock location (Figure
    139 \ref{fig:gaugeBeadonCreeksouthofdock}) suggesting that the wave's
    140 energy dissipates as inundation overflows from the creek. A large
    141 tidal flat region surrounds the southern parts of the creek and
    142 it is evident that the inundation is essentially caught in this
    143 area.
    144 
     1The inundation extent calculated at Onslow will be described in this section with
     2impact assessments following in Section \ref{sec:impact}.
     3% there will need to be something in here for when doing a range of events for each return period.
     4Figures \ref{fig:HAT_max_inundation}, \ref{fig:MSL_max_inundation} and
     5\ref{fig:LAT_max_inundation} illustrate the maximum inundation extent
     6for the Mw 9 event occurring at HAT, MSL and LAT respectively.
    1457As expected, there is greater inundation at HAT with increased
    1468extent. The major road
     
    16325free of inundation for each tidal scenario. Section \ref{sec:impact}
    16426details the impact estimates to the residential infrastructure.
     27
     28The geography of the Onslow area has played a role in offering
     29some protection to the Onslow community. The tsunami wave is
     30travelling from the north west of the area. Most of
     31the inundation along the coast is that which is open to this
     32direction. 
     33The sand dunes west of Onslow
     34appear to have halted this tsunami wave
     35(see Figure \ref{fig:MSL_max_inundation}) with limited
     36inundation found on the town's side of the dunes.
     37The inundation within the community has occurred due to the
     38wave reflecting from the beach area west of the creek and
     39returning towards the Onslow town itself. 
     40There are also sand dunes east of the creek which have also
     41halted inundation beyond them.
     42Currently, we do not model changes
     43to the bathymetry or topography due to effects of the water flow.
     44Therefore, we do not know whether these sand dunes would withstand the
     45transmitted energy of the tsunami wave.
     46Water features such as rivers, creeks and estuaries also play a role
     47in the inundation extent.
     48The tsunami wave penetrates the creek east of Onslow, however it
     49is evident that the inundation is essentailly maintained in the
     50large tidal flat region surrounding the southern parts of the creek.
     51
     52In addition to describing the maximum inundation extent,
     53we have
     54chosen a number of locations to illustrate the features
     55of the tsunami as it approaches and impacts Onslow.
     56These locations have been chosen as we believe they would
     57either be critical
     58in an emergency situation, (e.g. the hospital and power station) or
     59effect recovery efforts, (e.g. the airport and docks). These locations
     60are described in Table \ref{table:locations} and shown in
     61Figure \ref{fig:points}. The water's stage and speed
     62at each of these locations are shown
     63as a function of time in the series of graphs shown in
     64Appendix \ref{sec:timeseries}. Discussion of the main features of the
     65tsunami wave is also described in Appendix \ref{sec:timeseries}.
  • anuga_work/production/onslow_2006/report/latexoutput.tex

    r3347 r4134  
    1 \begin{figure}[hbt]
    2  \centering
    3  \begin{tabular}{cc}
    4 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonPointLoadingBerthstage.png}&
    5 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonPointLoadingBerthspeed.png}\\
    6 \end{tabular}
    7  \caption{Time series for stage and speed at Beadon Point Loading Berth location (elevation -8.70m)}
    8  \label{fig:gaugeBeadonPointLoadingBerth}
    9  \end{figure}
    10  
    11 \begin{figure}[hbt]
    12  \centering
    13  \begin{tabular}{cc}
    14 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeHospitalstage.png}&
    15 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeHospitalspeed.png}\\
    16 \end{tabular}
    17  \caption{Time series for stage and speed at Hospital location (elevation 6.02m)}
    18  \label{fig:gaugeHospital}
    19  \end{figure}
    20  
    211\begin{figure}[hbt]
    222 \centering
     
    255\includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBindiBindiCommunityspeed.png}\\
    266\end{tabular}
    27  \caption{Time series for stage and speed at Bindi Bindi Community location (elevation 4.08m)}
     7 \caption{Time series for depth and speed at Bindi Bindi Community location (elevation 4.08m)}
    288 \label{fig:gaugeBindiBindiCommunity}
    299 \end{figure}
    3010 
    31 \begin{figure}[hbt]
    32  \centering
    33  \begin{tabular}{cc}
    34 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugePowerStationstage.png}&
    35 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugePowerStationspeed.png}\\
    36 \end{tabular}
    37  \caption{Time series for stage and speed at Power Station location (elevation 5.81m)}
    38  \label{fig:gaugePowerStation}
    39  \end{figure}
    40  
    41 \begin{figure}[hbt]
    42  \centering
    43  \begin{tabular}{cc}
    44 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeAirportRunwaystage.png}&
    45 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeAirportRunwayspeed.png}\\
    46 \end{tabular}
    47  \caption{Time series for stage and speed at Airport Runway location (elevation 5.49m)}
    48  \label{fig:gaugeAirportRunway}
    49  \end{figure}
    50  
    51 \begin{figure}[hbt]
    52  \centering
    53  \begin{tabular}{cc}
    54 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonCreekDocksstage.png}&
    55 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonCreekDocksspeed.png}\\
    56 \end{tabular}
    57  \caption{Time series for stage and speed at Beadon Creek Docks location (elevation 1.65m)}
    58  \label{fig:gaugeBeadonCreekDocks}
    59  \end{figure}
    60  
    61 \begin{figure}[hbt]
    62  \centering
    63  \begin{tabular}{cc}
    64 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeWestofGroynestage.png}&
    65 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeWestofGroynespeed.png}\\
    66 \end{tabular}
    67  \caption{Time series for stage and speed at West of Groyne location (elevation -2.11m)}
    68  \label{fig:gaugeWestofGroyne}
    69  \end{figure}
    70  
    71 \begin{figure}[hbt]
    72  \centering
    73  \begin{tabular}{cc}
    74 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonCreekmouthstage.png}&
    75 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonCreekmouthspeed.png}\\
    76 \end{tabular}
    77  \caption{Time series for stage and speed at Beadon Creek mouth location (elevation -2.90m)}
    78  \label{fig:gaugeBeadonCreekmouth}
    79  \end{figure}
    80  
    81 \begin{figure}[hbt]
    82  \centering
    83  \begin{tabular}{cc}
    84 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonCreeksouthofdockstage.png}&
    85 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonCreeksouthofdockspeed.png}\\
    86 \end{tabular}
    87  \caption{Time series for stage and speed at Beadon Creek south of dock location (elevation -1.81m)}
    88  \label{fig:gaugeBeadonCreeksouthofdock}
    89  \end{figure}
    90  
    91 \begin{figure}[hbt]
    92  \centering
    93  \begin{tabular}{cc}
    94 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeCentredamwallstage.png}&
    95 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeCentredamwallspeed.png}\\
    96 \end{tabular}
    97  \caption{Time series for stage and speed at Centre dam wall location (elevation 2.09m)}
    98  \label{fig:gaugeCentredamwall}
    99  \end{figure}
    100  
    101 \begin{figure}[hbt]
    102  \centering
    103  \begin{tabular}{cc}
    104 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeDamoverflowstage.png}&
    105 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeDamoverflowspeed.png}\\
    106 \end{tabular}
    107  \caption{Time series for stage and speed at Dam overflow location (elevation 0.88m)}
    108  \label{fig:gaugeDamoverflow}
    109  \end{figure}
    110  
    111 \begin{figure}[hbt]
    112  \centering
    113  \begin{tabular}{cc}
    114 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeLightTowerstage.png}&
    115 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeLightTowerspeed.png}\\
    116 \end{tabular}
    117  \caption{Time series for stage and speed at Light Tower location (elevation 3.86m)}
    118  \label{fig:gaugeLightTower}
    119  \end{figure}
    120  
    121 \begin{figure}[hbt]
    122  \centering
    123  \begin{tabular}{cc}
    124 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonBayweststage.png}&
    125 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonBaywestspeed.png}\\
    126 \end{tabular}
    127  \caption{Time series for stage and speed at Beadon Bay west location (elevation -4.62m)}
    128  \label{fig:gaugeBeadonBaywest}
    129  \end{figure}
    130  
    131 \begin{figure}[hbt]
    132  \centering
    133  \begin{tabular}{cc}
    134 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonBayeaststage.png}&
    135 \includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeBeadonBayeastspeed.png}\\
    136 \end{tabular}
    137  \caption{Time series for stage and speed at Beadon Bay east location (elevation -3.56m)}
    138  \label{fig:gaugeBeadonBayeast}
    139  \end{figure}
    140  
  • anuga_work/production/onslow_2006/report/modelling_methodology.tex

    r3477 r4134  
    2929evenly spaced along the Sunda Arc subduction zone.
    3030The assessment used the Method of Splitting Tsunamis (MOST)
    31 \cite{VT:MOST} model.
    32 %The maximal wave height at a fixed contour line near the coastline
    33 %(e.g. 50m) is then reported as the hazard to communities ashore.
    34 %Models such as Method of Splitting Tsunamis (MOST) \cite{VT:MOST} and the
    35 %URS Corporation's
    36 %Probabilistic Tsunami Hazard Analysis 
    37 %\cite{somerville:urs} follow this paradigm.
     31\cite{VT:MOST} model. A detailed probabilistic hazard map has now been completed
     32for the WA coastline \cite{prob:fesa} which is based on the paradigm used by the URS corporation's
     33Probabilistic Tsunami Hazard Analysis \cite{somerville:urs}.
    3834
    39 While MOST is suitable for generating and propagating the tsunami wave from its source, it is not adequate to
     35While MOST and URS are suitable for generating and propagating the tsunami wave from its source,
     36they are not adequate to
    4037model the wave's impact on communities ashore. 
    4138To capture the \emph{impact} of a tsunami to a coastal community,
     
    5249details of the wave and its interactions, a much finer resolution is
    5350required than that of the hazard model. As a result, ANUGA simulations concentrate
    54 on specific coastal communities. MOST by contrast uses a
    55 coarser resolution and covers often vast areas. To develop the impact
     51on specific coastal communities. MOST and URS by contrast use a
     52coarser resolution and cover often vast areas. To develop the impact
    5653from an earthquake event from a distant source, we adopt a hybrid approach of
    57 modelling the event itself with MOST and modelling the impact with ANUGA.
    58 In this way, the output from MOST serves as an input to ANUGA.
    59 In modelling terms, the MOST output is a boundary condition for ANUGA.
     54modelling the event itself with MOST or URS and modelling the impact with ANUGA.
     55In this way, the output from MOST or URS serve as an input to ANUGA.
     56In modelling terms, the MOST or URS output is a boundary condition for ANUGA.
     57Further details
     58regarding the inundation modelling requirements for this study can be found in
     59Appendix \ref{anugasetup}.
    6060
    61 \bigskip %FIXME (Ole): Should this be a subsection even?
    62 The risk of a given tsunami scenario cannot be determined until the
    63 likelihood of the tsunami is known. GA is currently building a
    64 complete probabilistic hazard map which is due for completion
    65 in late 2006. We therefore report on the impact of a single
    66 tsunami event only. When the hazard map is completed, the impact
    67 will be assessed for a range of events which will ultimately
    68 determine a tsunami risk assessment for the NW shelf.
    69 
    70 FESA is interested in the ``most frequent worst case scenario''. Whilst
    71 we currently cannot determine exactly what that event may be, the
    72 preliminary hazard assessment suggested that the maximum
    73 magnitude of earthquakes off Java was considered to be at
    74 least 8.5 and could potentially be as high as 9. Therefore,
    75 the Mw 9 event
    76 provides a plausible worst case scenario and is used as the tsunami
    77 source in this report.
    78 Figure \ref{fig:mw9} shows the maximum wave height of a tsunami initiated
    79 by a Mw 9 event off
    80 the coast of Java. This event provides the source and
    81 boundary condition to the
    82 inundation model presented in Section \ref{sec:anuga}.
     61The risk of a given tsunami scenario can only be determined when the likelihood
     62of the event is known. The probabilistic hazard map for WA \cite{prob:fesa}
     63calculates which events pose the most threat to an identified region. Figure
     64\ref{fig:probonslow} describes the probability of each event generated along the Java trench
     65impacting Onslow. For example, an event generated at point A end would have a
     66smaller chance of impacting Onslow than an event generated at point B.
    8367
    8468\begin{figure}[h]
    8569
    86   \centerline{ \includegraphics[width=140mm, height=100mm]
    87 {../report_figures/mw9.jpg}}
     70%\centerline{ \includegraphics[width=140mm, height=100mm]{../report_figures/}}
    8871
    89   \caption{Maximum wave height (in cms) for a Mw 9 event off the
    90 coast of Java}
    91   \label{fig:mw9}
     72  \caption{}
     73  \label{fig:probonslow}
    9274\end{figure}
    9375
    94 %To model the
    95 %details of tsunami inundation of a community one must therefore capture %what is
    96 %known as non-linear effects and use a much higher resolution for the
    97 %elevation data.
    98 %Linear models typically use data resolutions of the order
    99 %of hundreds of metres, which is sufficient to model the tsunami waves
    100 %in deeper water where the wavelength is longer.
    101 %Non-linear models however require much finer resolution in order to %capture
    102 %the complexity associated with the water flow from offshore
    103 %to onshore. By contrast, the data
    104 %resolution required is typically of the order of tens of metres.
    105 %The model ANUGA \cite{ON:modsim} is suitable for this type of non-linear
    106 %modelling.
    107 %Using a non-linear model capable of resolving local bathymetric effects
    108 %and runup using detailed elevation data will require more computational
    109 %resources than the typical hazard model making it infeasible to use it
    110 %for the entire, end-to-end, modelling.
     76To prepare a tsunami risk assessment, a number of events will be chosen
     77for a range of probabilities (or return periods). As Figure \ref{fig:probonslow}
     78shows, for a given probability, a number of events are possible. The resulting
     79impact to Onslow would then vary depending on the source of the event. 
    11180
    112 %We have adopted a hybrid approach whereby the output from the 
    113 %hazard model MOST is used as input to ANUGA at the seaward boundary of its %study area.
    114 %In other words, the output of MOST serves as boundary condition for the
    115 %ANUGA model. In this way, we restrict the computationally intensive part %only to
    116 %regions where we are interested in the detailed inundation process. 
     81% used for the 2005 report when looking at one event
     82%\bigskip %FIXME (Ole): Should this be a subsection even?
     83%The risk of a given tsunami scenario cannot be determined until the
     84%likelihood of the tsunami is known. GA is currently building a
     85%complete probabilistic hazard map which is due for completion
     86%in late 2006. We therefore report on the impact of a single
     87%tsunami event only. When the hazard map is completed, the impact
     88%will be assessed for a range of events which will ultimately
     89%determine a tsunami risk assessment for the NW shelf.
    11790
    118 %Furthermore, to avoid unnecessary computations ANUGA works with an
    119 %unstructured triangular mesh rather than the rectangular grids
    120 %used by e.g.\ MOST. The advantage of an unstructured mesh
    121 %is that different regions can have different resolutions allowing
    122 %computational resources to be directed where they are most needed.
    123 %For example, one might use very high resolution near a community
    124 %or in an estuary, whereas a coarser resolution may be sufficient
    125 %in deeper water where the bathymetric effects are less pronounced.
    126 %Figure \ref{fig:refinedmesh} shows a mesh of variable resolution.
     91%FESA is interested in the ``most frequent worst case scenario''. Whilst
     92%we currently cannot determine exactly what that event may be, the
     93%preliminary hazard assessment suggested that the maximum
     94%magnitude of earthquakes off Java was considered to be at
     95%least 8.5 and could potentially be as high as 9. Therefore,
     96%the Mw 9 event
     97%provides a plausible worst case scenario and is used as the tsunami
     98%source in this report.
     99%Figure \ref{fig:mw9} shows the maximum wave height of a tsunami initiated
     100%by a Mw 9 event off
     101%the coast of Java. This event provides the source and
     102%boundary condition to the
     103%inundation model presented in Section \ref{sec:anuga}.
    127104
    128 %\begin{figure}[hbt]
    129 %
    130 %  \centerline{ \includegraphics[width=100mm, height=75mm]
    131 %             {../report_figures/refined_mesh.jpg}}
    132 %
    133 %  \caption{Unstructured mesh with variable resolution.}
    134 %  \label{fig:refinedmesh}
     105%\begin{figure}[h]
     106
     107%  \centerline{ \includegraphics[width=140mm, height=100mm]
     108%{../report_figures/mw9.jpg}}
     109
     110%  \caption{Maximum wave height (in cms) for a Mw 9 event off the
     111%coast of Java}
     112%  \label{fig:mw9}
    135113%\end{figure}
    136    
    137114
    138115
  • anuga_work/production/onslow_2006/report/onslow_2006_report.tex

    r3407 r4134  
    6363    \input{modelling_methodology}
    6464   
    65 %  \section{Tsunami scenarios}
    66 %    \label{sec:tsunamiscenario}
    67 %    \input{tsunami_scenario}
     65  \section{Tsunami scenarios}
     66    \label{sec:tsunamiscenario}
     67    \input{tsunami_scenario}
    6868
    6969  \section{Data sources}
    7070    \label{sec:data}
    7171    \input{data}
    72    
    73    \section{Inundation model}
    74     \label{sec:anuga}
    75     \input{anuga}
    76     \input{computational_setup}
    7772       
    7873  \section{Inundation modelling results}
     
    8378\label{table:locations}
    8479\begin{tabular}{|l|l|l|l|}\hline
    85 \bf{Point Name} & \bf{Easting} & \bf{Northing} & \bf{Elevation}\\ \hline
     80\bf{Point Name} & \bf{Easting} & \bf{Northing} & \bf{Elevation (m)}\\ \hline
    8681Beadon Point Loading Berth & 302986.51 & 7607334.65 & -8.70 \\ \hline
    8782Hospital & 304973.04 & 7605500.42 & 6.02 \\ \hline
     
    10398 
    10499\begin{figure}[hbt]
    105  \centerline{ \includegraphics[width=150mm, height=100mm]{../report_figures/onslow_dli_gauge.jpg}}
     100 \centerline{ \includegraphics[width=\paperwidth]{../report_figures/onslow_dli_gauge.jpg}}
    106101\caption{Point locations used for Onslow study.} 
    107102\label{fig:points}
     
    122117     \input{damage}
    123118
    124  \section{Impact due to data accuracy}
    125    \input{discussion}
    126    \label{sec:issues}
     119  % \section{Impact due to data accuracy}
     120  %   \input{discussion}
     121  %   \label{sec:issues}
    127122
    128123     \section{Summary}
     
    136131
    137132    \appendix
    138    
     133
     134    \section{ANUGA modelling parameters}
     135    \label{sec:anugasetup}
     136    \input{anuga_setup}
     137
     138\clearpage
     139
    139140   \section{Metadata}
    140141     \label{sec:metadata}
    141142     \input{metadata}
    142143
    143 \pagebreak
     144\clearpage
    144145
    145146   \section{Time series}
    146147     \label{sec:timeseries}
     148     \input{timeseriesdiscussion}
    147149\input{latexoutput}
    148150 \clearpage
  • anuga_work/production/onslow_2006/report/references.tex

    r3477 r4134  
    1212Tsunami (MOST) model, NOAA Technical Memorandum ERL PMEL-112.
    1313
    14 %\bibitem{somerville:urs} Somerville, P., Thio, H.K. and Ichinose, G. (2005)
    15 %Probabilistic Tsunami Hazard Analysis. Report delivered to Geoscience
    16 %Australia 2005.
     14\bibitem{prob:fesa} Burbidge, D. and Cummins, P. (2006) Probabilistic
     15Tsunami Hazard Assessment of Western Australia. Report to the
     16Fire and Emergency Services Authority of Western Australia.
     17
     18\bibitem{somerville:urs} Somerville, P., Thio, H.K. and Ichinose, G. (2005)
     19Probabilistic Tsunami Hazard Analysis. Report delivered to Geoscience
     20Australia 2005.
    1721
    1822\bibitem{matsuyama:1999}
     
    4650HAZUS-MH User Manual, Washington DC, USA.
    4751
     52\bibitem{uq:friction} Duncan - do you have a reference for this?
     53
    4854\end{thebibliography}
  • anuga_work/production/pt_hedland_2006/make_report.py

    r3514 r4134  
    211211\label{table:locations}
    212212\\begin{tabular}{|l|l|l|l|}\hline
    213 \\bf{Point Name} & \\bf{Easting} & \\bf{Northing} & \\bf{Elevation}\\\\ \hline
     213\\bf{Point Name} & \\bf{Easting} & \\bf{Northing} & \\bf{Elevation (m)}\\\\ \hline
    214214"""
    215215fid.write(s)
     
    271271
    272272    \\appendix
    273    
     273
     274    \section{ANUGA modelling parameters}
     275    \label{sec:anugasetup}
     276    \input{anuga_setup}
     277
     278\clearpage
     279
    274280   \section{Metadata}
    275281     \label{sec:metadata}
    276282     \input{metadata}
    277283
    278 \pagebreak
     284\clearpage
    279285
    280286   \section{Time series}
  • anuga_work/production/sydney_2006/report/anuga_setup.tex

    r4110 r4134  
    4848Region 1: Surrounding major population centre of Wollongong with a cell area of 500 m$^2$ (lateral accuracy 30 m).
    4949Region 2: Surrounding Lake Illawarra (south of Wollongong) with a cell area of 500 m$^2$ (lateral accuracy 30 m).
    50 Region 3: Surrounds the coastal regions with a cell area of 25000 m$^2$ (lateral accuracy m).
    51 Region 4: The remaining area is given a cell area of 1000000 m$^2$ (lateral accuracy m).
     50Region 3: Surrounds the coastal regions with a cell area of 25000 m$^2$ (lateral accuracy 220 m).
     51Region 4: The remaining area is given a cell area of 1000000 m$^2$ (lateral accuracy 1400 m).
    5252}
    5353  \label{fig:regionA}
     
    5858  \centerline{ \includegraphics[scale=0.5]{../report_figures/regionBmodel.jpg}}
    5959
    60   \caption{Study area for region B highlighting four regions of increased refinement.
     60  \caption{Study area for region B highlighting three regions of increased refinement.
    6161Region 1: Surrounding the entrance to Sydney harbour, Northern Beaches and Botany Bay with a cell area of 500 m$^2$ (lateral accuracy 30 m).
    62 Region 2: Surrounding the coastal regions with a cell area of 50000 m$^2$ (lateral accuracy m).
    63 Region 3: The remaining area is given a cell area of 250000 m$^2$ (lateral accuracy m).
     62Region 2: Surrounding the coastal regions with a cell area of 50000 m$^2$ (lateral accuracy 315 m).
     63Region 3: The remaining area is given a cell area of 250000 m$^2$ (lateral accuracy 700 m).
    6464}
    6565  \label{fig:regionB}
     
    7070  \centerline{ \includegraphics[scale=0.5]{../report_figures/regionCmodel.jpg}}
    7171
    72   \caption{Study area for region C highlighting four regions of increased refinement.
    73 Region 1: Surrounding the major population centre of Newcastle with a cell area of 1000 m$^2$ (lateral accuracy m).
    74 Region 2: Surrounding the coastal regions with a cell area of 50000 m$^2$ (lateral accuracy  m).
    75 Region 3: The remaining area is given a cell area of 500000 m$^2$ (lateral accuracy  m).
     72  \caption{Study area for region C highlighting three regions of increased refinement.
     73Region 1: Surrounding the major population centre of Newcastle with a cell area of 1000 m$^2$ (lateral accuracy 45 m).
     74Region 2: Surrounding the coastal regions with a cell area of 50000 m$^2$ (lateral accuracy  315 m).
     75Region 3: The remaining area is given a cell area of 500000 m$^2$ (lateral accuracy  1000 m).
    7676}
    7777  \label{fig:regionC}
     
    110110\end{center}
    111111\end{table}
     112
     113
     114\begin{table}[h]
     115\begin{center}
     116
     117\caption{Output directories for model simulations.}
     118\begin{tabular}{|l|l|l|}\hline
     119{\bf Region} & {\bf Slide}  & {\bf Location:}
     120$\backslash {\rm inundation \backslash data \backslash new\_south\_wales
     121\backslash }$ \\ \hline
     122A & Bulli &  $ {\rm wollongong \_tsunami\_scenario\_2006 \backslash anuga
     123\backslash outputs \backslash 20061211\_060105}$ \\ \hline
     124A & Shovel & ${\rm wollongong \_tsunami\_scenario\_2006 \backslash anuga
     125\backslash outputs \backslash
     12620061212\_012715}$ \\ \hline
     127A & Yacaaba & ${\rm wollongong \_tsunami\_scenario\_2006 \backslash anuga
     128\backslash outputs \backslash
     12920061212\_064735}$ \\ \hline
     130B & Bulli &  ${\rm sydney \_tsunami\_scenario\_2006 \backslash anuga
     131\backslash outputs \backslash
     13220061211\_071516}$ \\ \hline
     133B & Shovel & ${\rm sydney \_tsunami\_scenario\_2006 \backslash anuga
     134\backslash outputs \backslash
     13520061212\_012705}$ \\ \hline
     136B & Yacaaba & $\rm{ sydney \_tsunami\_scenario\_2006 \backslash anuga
     137\backslash outputs \backslash
     13820061212\_064807}$ \\ \hline
     139C & Bulli &  ${\rm newcastle \_tsunami\_scenario\_2006 \backslash anuga
     140\backslash outputs \backslash
     14120061211\_073709}$ \\ \hline
     142C & Shovel &  ${\rm newcastle \_tsunami\_scenario\_2006 \backslash anuga
     143\backslash outputs \backslash
     14420061212\_012802}$ \\ \hline
     145C & Yacaaba & ${\rm newcastle \_tsunami\_scenario\_2006 \backslash anuga
     146\backslash outputs \backslash
     14720061212\_064757}$ \\ \hline
     148\end{tabular}
     149
     150\end{center}
     151\end{table}
  • anuga_work/production/sydney_2006/report/interpretation.tex

    r4111 r4134  
    55each model with respect to each other and highlights the location
    66of the slides modelled in this study. See Appendix \ref{sec:anugasetup}
    7 showing the detail for each study region.
     7for the detailed inundation modelling setup for each study region.
    88
    9 \begin{figure}
     9\begin{figure}[h]
    1010\centerline{\includegraphics[scale=0.4]{../report_figures/overallmodel.jpg}}
    1111\caption{NSW region showing the location of each study region and the location
     
    2626
    2727The time to impact after the initiation of the slide is approximately 25 mins
    28 for region A, 25 mins for region B and mins for region C. See Appendix \ref{sec:timeseries}
     28for region A and B and approximately 35 mins for region C. See Appendix \ref{sec:timeseries}
    2929for time series outputs at Fairy Meadow (for region A), Manly Beach (for region B) and
    3030Stockton Beach (for region C).
     
    6868resultant amplitude are approximately equal.
    6969
    70 \begin{figure}
    71 \centerline{\includegraphics[scale=0.4]{../report_figures/depthvsampdataslide.png}}
     70\begin{figure}[h]
     71\centerline{\includegraphics[scale=0.25]{../report_figures/depthvsampdataslide.png}}
    7272\caption{Relationship between characteristic 3D amplitude and depth
    7373for each slide volume.}
  • anuga_work/production/sydney_2006/report/latexoutput20061211071516.tex

    r4111 r4134  
    99 \end{figure}
    1010 
     11\begin{figure}[hbt]
     12 \centering
     13 \begin{tabular}{cc}
     14\includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeOffshoreManlystage20061211071516.png}&
     15\includegraphics[width=0.49\linewidth, height=50mm]{../report_figures/gaugeOffshoreManlymomentum20061211071516.png}\\
     16\end{tabular}
     17 \caption{Time series for depth,  and momentum at Offshore Manly location (elevation 0.75m)}
     18 \label{fig:20061211071516gaugeOffshoreManly}
     19 \end{figure}
     20 
  • anuga_work/production/sydney_2006/report/sydney_2006_report.tex

    r4111 r4134  
    7272         
    7373\input{interpretation}
    74 \input{shovel_A_map}
     74\input{bulli_A_map}
     75 \clearpage
     76 \input{shovel_A_map}
     77 \clearpage
     78 \input{yacaaba_A_map}
     79 \clearpage
     80 \input{bulli_B_map}
     81 \clearpage
     82 \input{shovel_B_map}
     83  \clearpage
     84 
     85 \input{yacaaba_B_map}
     86 \clearpage
     87\input{bulli_C_map}
     88 \clearpage
     89\input{shovel_C_map}
     90 \clearpage
     91\input{yacaaba_C_map}
    7592 \clearpage
    7693 
    77 
    78 
    7994     \section{Summary}
    8095     \label{sec:summary}
     
    95110\label{sec:anugasetup}
    96111\input{anuga_setup}
     112
     113\pagebreak
    97114
    98115\section{Submarine Mass Failure Model}
Note: See TracChangeset for help on using the changeset viewer.