Changeset 4151 for anuga_work
- Timestamp:
- Jan 9, 2007, 3:26:53 PM (18 years ago)
- Location:
- anuga_work/production
- Files:
-
- 2 added
- 2 deleted
- 16 edited
Legend:
- Unmodified
- Added
- Removed
-
anuga_work/production/dampier_2006/build_dampier.py
r4147 r4151 121 121 122 122 print'clip combined geospatial object by bounding polygon' 123 G_clipped = G.clip(project. bounding_polygon)123 G_clipped = G.clip(project.poly_all) 124 124 #FIXME: add a clip function to pts 125 125 #print'shape of clipped data', G_clipped.get_data_points().shape … … 128 128 if access(project.topographies_dir,F_OK) == 0: 129 129 mkdir (project.topographies_dir) 130 G_clipped.export_points_file(project.combined_dir_name + '.pts') 131 #G_clipped.export_points_file(project.combined_dir_name + '.xya') 132 133 ''' 134 #------------------------------------------------------------------------- 135 # Convert URS to SWW file for boundary conditions 136 #------------------------------------------------------------------------- 137 print 'starting to create boundary conditions' 138 boundaries_in_dir_name = project.boundaries_in_dir_name 139 140 from anuga.shallow_water.data_manager import urs2sww 141 142 print 'minlat=project.north_boundary, maxlat=project.south_boundary',project.north_boundary, project.south_boundary 143 print 'minlon= project.west_boundary, maxlon=project.east_boundary',project.west_boundary, project.east_boundary 144 145 #import sys; sys.exit() 146 147 #if access(project.boundaries_dir,F_OK) == 0: 148 # mkdir (project.boundaries_dir) 149 150 from caching import cache 151 cache(urs2sww, 152 (boundaries_in_dir_name, 153 project.boundaries_dir_name1), 154 {'verbose': True, 155 'minlat': project.south_boundary, 156 'maxlat': project.north_boundary, 157 'minlon': project.west_boundary, 158 'maxlon': project.east_boundary, 159 # 'minlat': project.south, 160 # 'maxlat': project.north, 161 # 'minlon': project.west, 162 # 'maxlon': project.east, 163 'mint': 0, 'maxt': 40000, 164 # 'origin': domain.geo_reference.get_origin(), 165 'mean_stage': project.tide, 166 # 'zscale': 1, #Enhance tsunami 167 'fail_on_NaN': False}, 168 verbose = True, 169 ) 170 # dependencies = source_dir + project.boundary_basename + '.sww') 130 #G_clipped.export_points_file(project.combined_dir_name + '.pts') 131 G_clipped.export_points_file(project.combined_dir_name + '.xya') -
anuga_work/production/dampier_2006/make_report.py
r4134 r4151 73 73 report_title = 'Tsunami impact modelling for %s' %scenario_name.title() 74 74 75 # WA DLI data76 production_dirs = {#'20061101_053132_run': 'big event'} # parallel77 #'20061101_054432_run': 'big event'} # sequential78 #'20061107_070805_run': 'Mw 9.0',79 '20061116_055135_run': 'Mw 9.0'} # multiple interior regions80 #'20061116_062924_run': 'Mw 9.0'} # one interior region81 82 75 is_parallel = True 83 76 if is_parallel == True: 84 77 nodes = 8 85 86 max_maps = {'Mw 9.0': 'mw9_map'} 87 78 79 return_periods = [1000, 100000] 80 81 # output directories 82 production_dirs_1000 = {'20061116_055135_run': 'Mw 9.0'} # RP 1000 years 83 production_dirs_100000 = {'20061116_055135': 'Mw 8.0'} # RP 100000 years 84 85 all_prod_dirs = [production_dirs_1000, production_dirs_100000] 86 87 max_maps_1000 = {'Mw 6.0': 'mw6_map'} 88 max_maps_100000 = {'Mw 9.0': 'mw9_map'} 89 90 all_maps = [max_maps_1000, max_maps_100000] 91 92 # gauge map names 88 93 gauge_map1 = 'dampier_gauges_1.jpg' 89 94 gauge_map2 = 'dampier_gauges_2.jpg' … … 91 96 # Create sections and graphs for each designated production directory 92 97 latex_output = [] 93 report_name = 'latexoutput _cipma'98 report_name = 'latexoutput' 94 99 95 100 if is_parallel == True: 96 97 for i in range(nodes): 98 print 'Sending node %d of %d' %(i,nodes) 101 102 for j, production_dirs in enumerate(all_prod_dirs): 103 104 for i in range(nodes): 105 print 'Sending node %d of %d' %(i,nodes) 106 reportname = report_name + '%s' + 'rp%s' %(i,j) 107 swwfiles = {} 108 109 for label_id in production_dirs.keys(): 110 file_loc = project.output_dir + label_id + sep 111 sww_extra = '_P%s_%s' %(i,nodes) 112 swwfile = file_loc + project.scenario_name + sww_extra + '.sww' 113 swwfiles[swwfile] = label_id 114 115 texname, elev_output = sww2timeseries(swwfiles, 116 project.gauge_filename, 117 production_dirs, 118 report = True, 119 reportname = reportname, 120 plot_quantity = ['stage', 'momentum'], 121 surface = False, 122 time_min = None, 123 time_max = None, 124 title_on = False, 125 verbose = True) 126 127 latex_output.append(texname) 128 129 else: 130 131 for i, production_dirs in enumerate(all_prod_dirs): 132 99 133 swwfiles = {} 100 reportname = report_name + '_%s' %(i) 134 reportname = report_name + 'rp%s' %(i) 135 101 136 for label_id in production_dirs.keys(): 137 102 138 file_loc = project.output_dir + label_id + sep 103 sww_extra = '_P%s_%s' %(i,nodes) 104 swwfile = file_loc + project.scenario_name + sww_extra + '.sww' 139 swwfile = file_loc + project.scenario_name + '.sww' 105 140 swwfiles[swwfile] = label_id 106 107 texname, elev_output = sww2timeseries(swwfiles,108 project.gauge_filename,109 production_dirs,110 report = True,111 reportname = reportname,112 plot_quantity = ['stage', 'momentum'],113 surface = False,114 time_min = None,115 time_max = None,116 title_on = False,117 verbose = True)118 141 119 latex_output.append(texname) 120 121 else: 122 123 for label_id in production_dirs.keys(): 124 125 file_loc = project.output_dir + label_id + sep 126 swwfile = file_loc + project.scenario_name + '.sww' 127 swwfiles[swwfile] = label_id 128 129 texname, elev_output = sww2timeseries(swwfiles, 130 project.gauge_filename, 131 production_dirs, 132 report = True, 133 reportname = report_name, 134 plot_quantity = ['stage', 'momentum'], 135 surface = False, 136 time_min = None, 137 time_max = None, 138 title_on = False, 139 verbose = True) 142 texname, elev_output = sww2timeseries(swwfiles, 143 project.gauge_filename, 144 production_dirs, 145 report = True, 146 reportname = reportname, 147 plot_quantity = ['stage', 'momentum'], 148 surface = False, 149 time_min = None, 150 time_max = None, 151 title_on = False, 152 verbose = True) 153 latex_output.append(texname) 140 154 141 155 # Start report generation 142 156 # Future: generate_report(reportdir, scenario, report_title, 143 157 # project.gauge_filename, max_maps, damage_maps, production_dirs, latex_output) 144 report_name = reportdir + scenario + '_report _CIPMA.tex'158 report_name = reportdir + scenario + '_report.tex' 145 159 fid = open(report_name, 'w') 146 160 … … 200 214 s = '%s} '%report_title 201 215 fid.write(s) 216 202 217 s = """ 203 218 \maketitle … … 207 222 \input{execsum} 208 223 224 \clearpage 225 209 226 \\tableofcontents 210 227 228 \section{Introduction} 229 \label{sec:intro} 230 \input{introduction} 231 211 232 \section{Modelling methodology} 212 233 \label{sec:methodology} 213 234 \input{modelling_methodology} 235 236 \section{Tsunami scenarios} 237 \label{sec:tsunamiscenario} 238 \input{tsunami_scenario} 214 239 215 240 \section{Data sources} 216 241 \label{sec:data} 217 242 \input{data} 218 219 %\section{Inundation model}220 % \label{sec:anuga}221 % \input{anuga}222 % \input{computational_setup}223 243 224 244 \section{Inundation modelling results} … … 227 247 """ 228 248 fid.write(s) 229 230 # Generate latex output for location points 231 ##s = '\\begin{table} \\begin{center} \n' 232 ##fid.write(s) 233 ##s = '\caption{Defined point locations for %s study area.}' %scenario_name 234 ##fid.write(s) 235 ##s = """ 236 ##\label{table:locations} 237 ##\\begin{tabular}{|l|l|l|l|}\hline 238 ##\\bf{Point Name} & \\bf{Easting} & \\bf{Northing} & \\bf{Elevation (m)}\\\\ \hline 239 ##""" 240 ##fid.write(s) 241 ## 242 ##gauges, locations, elevation = get_gauges_from_file(project.gauge_filename) 243 ## 244 ##for name, gauges, elev in zip(locations, gauges, elevation): 245 ## east = gauges[0] 246 ## north = gauges[1] 247 ## s = '%s & %.2f & %.2f & %.2f \\\\ \hline \n' %(name.replace('_',' '), east, north, elev) 248 ## fid.write(s) 249 ## 250 ##s = '\\end{tabular} \n \end{center} \n \end{table} \n \n' 251 ##fid.write(s) 252 ## 253 254 s = '\\begin{figure}[hbt] \centerline{\includegraphics[scale = 0.5]{../report_figures/%s}}' %gauge_map2 255 fid.write(s) 256 s = """ 257 \caption{Point locations used for Dampier study; surrounding the facility. 258 See Appendix \\ref{sec:timeseries} for stage and momentum results. 259 } 260 \label{fig:points2} 261 \end{figure} 262 """ 263 fid.write(s) 264 s = '\\begin{figure}[hbt] \centerline{\includegraphics[scale=0.5]{../report_figures/%s}}' %gauge_map3 265 fid.write(s) 266 s = """ 267 \caption{Point locations used for Dampier study; section 268 of the pipeline towards the boundary of the region and other boundary gauges. 269 See Appendix \\ref{sec:timeseries} for stage and momentum results.} 270 \label{fig:points3} 271 \end{figure} 272 """ 273 fid.write(s) 274 275 #s = '\input{interpretation} \n' 276 #fid.write(s) 249 250 s = '\input{interpretation} \n' 251 fid.write(s) 277 252 278 253 # Assign titles to each production section 279 254 # Must specify one name per section 280 for i, name in enumerate(production_dirs.keys()):281 282 s = '\ input{%s} \n \clearpage \n \n' %max_maps[production_dirs[name]]255 for i, max_maps in enumerate(all_maps): 256 257 s = '\subsection{Return Period: %s years} \n \n' %return_periods[i] 283 258 fid.write(s) 284 259 260 production_dirs = all_prod_dirs[i] 261 for name in enumerate(production_dirs.keys()): 262 s = '\input{%s} \n \clearpage \n \n' %max_maps[production_dirs[name]] 263 fid.write(s) 264 265 # Generate latex output for location points 266 s = '\\begin{table} \\begin{center} \n' 267 fid.write(s) 268 s = '\caption{Defined point locations for %s study area.}' %scenario_name.title() 269 fid.write(s) 270 s = """ 271 \label{table:locations} 272 \\begin{tabular}{|l|l|l|l|}\hline 273 \\bf{Point Name} & \\bf{Easting} & \\bf{Northing} & \\bf{Elevation (m)}\\\\ \hline 274 """ 275 fid.write(s) 276 277 gauges, locations, elevation = get_gauges_from_file(project.gauge_filename) 278 279 for name, gauges, elev in zip(locations, gauges, elevation): 280 east = gauges[0] 281 north = gauges[1] 282 s = '%s & %.2f & %.2f & %.2f \\\\ \hline \n' %(name.replace('_',' '), east, north, elev) 283 fid.write(s) 284 285 s = '\\end{tabular} \n \end{center} \n \end{table} \n \n' 286 fid.write(s) 287 288 #s = '\\begin{figure}[h] \n \centerline{ \includegraphics[width=\paperwidth]{../report_figures/%s}}' %gauge_map 289 s = '\\begin{figure}[h] \n \centerline{ \includegraphics[scale=0.7]{../report_figures/%s}}' %gauge_map 290 fid.write(s) 291 292 s = """ 293 \caption{Point locations used for Dampier study.} 294 \label{fig:points} 295 \end{figure} 296 297 \clearpage 298 """ 299 fid.write(s) 300 285 301 # Closing 286 302 287 288 s = """ 289 303 s = """ 304 \section{Impact modelling} 305 \label{sec:impact} 306 \input{damage} 307 """ 308 fid.write(s) 309 310 s = """ 290 311 \section{Summary} 291 312 \label{sec:summary} 292 313 \input{summary} 293 314 294 %\section{Acknowledgements}295 %\input{acknowledgements}315 \section{Acknowledgements} 316 \input{acknowledgements} 296 317 297 318 \input{references} 298 319 320 \clearpage 321 299 322 \\appendix 300 323 301 \section{ANUGA modelling parameters} 302 \label{sec:anugasetup} 303 \input{anuga_setup} 324 \section{ANUGA modelling parameters} 325 \label{sec:anugasetup} 326 \input{anuga_setup} 327 328 \clearpage 304 329 305 330 \section{Metadata} 306 331 \label{sec:metadata} 307 332 \input{metadata} 308 309 \section{ANUGA modelling parameters}310 \label{sec:anugasetup}311 \input{anuga_setup}312 333 313 334 \clearpage … … 315 336 \section{Time series} 316 337 \label{sec:timeseries} 338 \input{timeseriesdiscussion} 339 \clearpage 317 340 """ 318 341 fid.write(s) … … 320 343 for i in range(len(latex_output)): 321 344 if latex_output[i] <> '': 345 s = '\subsection{Return Period: %s years} \n' %return_periods[i] 346 fid.write(s) 322 347 s = '\input{%s} \n \clearpage \n \n' %latex_output[i] 323 348 fid.write(s) 324 349 325 350 s=""" 351 \section{Damage modelling inputs} 352 \label{sec:damageinputs} 353 \input{damage_inputs} 354 326 355 \end{document} 327 356 """ -
anuga_work/production/dampier_2006/run_dampier.py
r4147 r4151 45 45 46 46 # filenames 47 build_time = '20061107_063840_build'48 bound_time = '20061102_221245_build'49 50 47 boundaries_name = project.boundaries_name 51 48 meshes_dir_name = project.meshes_dir_name+'.msh' … … 135 132 domain.set_quantity('stage', tide) 136 133 domain.set_quantity('friction', 0.01) 137 #combined_time_dir_name = project.topographies_dir+build_time+project.combined_name138 134 print 'Start Set quantity' 139 135 -
anuga_work/production/onslow_2006/make_report.py
r4147 r4151 25 25 * Tsunami scenario 26 26 * Data sources 27 28 27 * Inundation modelling results 29 28 * Impact modelling … … 81 80 82 81 # WA DLI data 83 production_dirs = {'20060704_063234': 'MSL', 84 '20060704_063005': 'HAT', 85 '20060706_235246': 'LAT'} 86 87 max_maps = {'MSL': 'MSL_map', 82 production_dirs_test1 = {'20060704_063234': 'MSL', 83 '20060704_063005': 'HAT', 84 '20060706_235246': 'LAT'} 85 86 production_dirs_test2 = production_dirs_test1 87 88 return_periods = [1000, 1000000] 89 90 all_prod_dirs = [production_dirs_test1, production_dirs_test2] 91 #all_prod_dirs = [production_dirs_test1] 92 93 is_parallel = False 94 if is_parallel == True: 95 nodes = 8 96 97 max_maps1 = {'MSL': 'MSL_map', 88 98 'HAT': 'HAT_map', 89 99 'LAT': 'LAT_map'} 90 100 101 max_maps2 = max_maps1 102 103 all_maps = [max_maps1, max_maps2] 104 91 105 gauge_map = 'onslow_dli_gauge.jpg' 92 106 … … 95 109 # Create sections and graphs for each designated production directory 96 110 latex_output = [] 111 report_name = 'latexoutput' 97 112 swwfiles = {} 98 for label_id in production_dirs.keys(): 99 100 file_loc = project.outputdir + label_id + sep 101 swwfile = file_loc + project.basename + '.sww' 102 swwfiles[swwfile] = label_id 103 104 texname, elev_output = sww2timeseries(swwfiles, 105 project.gauge_filename, 106 #project.gauge_filename_bindi, 107 production_dirs, 108 report = True, 109 reportname = 'latexoutput', 110 plot_quantity = ['stage', 'speed'], 111 surface = False, 112 time_min = None, 113 time_max = None, 114 title_on = False, 115 verbose = True) 116 117 latex_output.append(texname) 118 113 if is_parallel == True: 114 115 for j, production_dirs in enumerate(all_prod_dirs): 116 117 for i in range(nodes): 118 print 'Sending node %d of %d' %(i,nodes) 119 swwfiles = {} 120 reportname = report_name + '%s' + 'rp%s' %(i,j) 121 122 for label_id in production_dirs.keys(): 123 file_loc = project.output_dir + label_id + sep 124 sww_extra = '_P%s_%s' %(i,nodes) 125 swwfile = file_loc + project.basename + sww_extra + '.sww' 126 #swwfile = file_loc + project.scenario_name + sww_extra + '.sww' 127 swwfiles[swwfile] = label_id 128 129 texname, elev_output = sww2timeseries(swwfiles, 130 project.gauge_filename, 131 production_dirs, 132 report = True, 133 reportname = reportname, 134 plot_quantity = ['stage', 'momentum'], 135 surface = False, 136 time_min = None, 137 time_max = None, 138 title_on = False, 139 verbose = True) 140 141 latex_output.append(texname) 142 143 else: 144 145 for i, production_dirs in enumerate(all_prod_dirs): 146 147 swwfiles = {} 148 reportname = report_name + 'rp%s' %(i) 149 150 for label_id in production_dirs.keys(): 151 152 file_loc = project.outputdir + label_id + sep 153 swwfile = file_loc + project.basename + '.sww' 154 #swwfile = file_loc + project.scenario_name + sww_extra + '.sww' 155 swwfiles[swwfile] = label_id 156 157 texname, elev_output = sww2timeseries(swwfiles, 158 project.gauge_filename, 159 production_dirs, 160 report = True, 161 reportname = reportname, 162 plot_quantity = ['stage', 'speed'], 163 surface = False, 164 time_min = None, 165 time_max = None, 166 title_on = False, 167 verbose = True) 168 169 latex_output.append(texname) 170 119 171 # Start report generation 120 172 # Future: generate_report(reportdir, scenario, report_title, … … 152 204 \usepackage{setspace} 153 205 \usepackage{rotating} 206 \usepackage{pdfpages} 154 207 \include{appendix} 155 208 \setstretch{1.25} … … 164 217 fid.write(s) 165 218 166 #s = '\\title{%s} \n' %report_title167 #fid.write(s)168 169 219 s = """ 170 220 \date{\\today} … … 218 268 # Assign titles to each production section 219 269 # Must specify one name per section 220 for i, name in enumerate(production_dirs.keys()): 221 # 222 # s = '\subsection{%s} \n \n' %production_dirs[name] 223 # fid.write(s) 224 225 s = '\input{%s} \n \clearpage \n \n' %max_maps[production_dirs[name]] 270 for i, max_maps in enumerate(all_maps): 271 272 s = '\subsection{Return Period: %s years} \n \n' %return_periods[i] 226 273 fid.write(s) 274 275 production_dirs = all_prod_dirs[i] 276 for i, name in enumerate(production_dirs.keys()): 277 278 s = '\input{%s} \n \clearpage \n \n' %max_maps[production_dirs[name]] 279 fid.write(s) 227 280 228 281 # Generate latex output for location points … … 308 361 fid.write(s) 309 362 310 s = '\input{%s} \n \clearpage \n \n' %latex_output[0] 311 fid.write(s) 363 for i in range(len(latex_output)): 364 if latex_output[i] <> '': 365 s = '\subsection{Return Period: %s years} \n' %return_periods[i] 366 fid.write(s) 367 s = '\input{%s} \n \clearpage \n \n' %latex_output[i] 368 fid.write(s) 312 369 313 370 s=""" -
anuga_work/production/onslow_2006/project.py
r4134 r4151 17 17 state = 'western_australia' 18 18 scenario_dir_name = 'onslow_tsunami_scenario_2006' 19 scenario_name = 'onslow' 19 20 20 21 # 250m data to be provided -
anuga_work/production/onslow_2006/report/anuga_setup.tex
r4145 r4151 12 12 13 13 The initial conditions used for this scenario are MSL, HAT and LAT which were 14 defined in Section \ref{sec:data}. 14 defined in Section \ref{sec:data}. Figure \ref{fig:IC} shows the MSL, HAT and 15 LAT contours to illustrate the water level for each of these inial conditions. 15 16 The dynamics of 16 17 tidal effects (that is, the changes in water height over time for … … 23 24 in the scenario. The 24 25 results are therefore likely to be over estimates. 26 27 \begin{figure}[h] 28 29 \centerline{\includegraphics[width=\paperwidth]{../report_figures/onslow_dli_contour.jpg}} 30 31 \caption{Onslow region showing the initial conditions used for the study; 32 -1.5m AHD (LAT), 0m AHD (MSL) and 1.5m AHD (HAT) contour lines.} 33 \label{fig:IC} 34 \end{figure} 35 25 36 26 37 To set up a model for the tsunami scenario, a study area is first … … 69 80 The final item to be addressed to complete the model setup is the 70 81 definition of the boundary condition. As 71 discussed in Section \ref{sec:methodology}, a range of events with72 different return periods will modelled. It must be 73 remembered that tsunamis are typicallymade up of a series82 discussed in Section \ref{sec:methodology}, a series of events corresponding 83 to a range of return periods are selected as the tsunami sources. 84 The resultant tsunami wave is made up of a series 74 85 of waves with different amplitudes which is affected by the energy 75 86 and style of the event as well as the bathymetry whilst it travels 76 from its source to Onslow. The amplitude and velocity of each of these87 from its source to Dampier. The amplitude and velocity of each of these 77 88 waves are then provided to ANUGA as boundary conditions and propagated 78 89 inshore. -
anuga_work/production/onslow_2006/report/metadata.tex
r3406 r4151 1 2 See Enclosure. 1 %\includepdf[pages={1-6}]{MetadataforATWSOnslowScenario} -
anuga_work/production/onslow_2006/report/modelling_methodology.tex
r4147 r4151 1 2 1 Geoscience Australia aims to define the economic and social threat posed to urban communities 3 2 by a range of rapid onset natural hazards. Through the integration of natural hazard research, defining national exposure and -
anuga_work/production/pt_hedland_2006/make_report.py
r4134 r4151 52 52 from os import getcwd, sep, altsep, mkdir, access, F_OK 53 53 import project 54 from anuga. pyvolution.util import sww2timeseries, get_gauges_from_file54 from anuga.abstract_2d_finite_volumes.util import sww2timeseries, get_gauges_from_file 55 55 56 56 # Derive scenario name … … 70 70 report_title = 'Tsunami impact modelling for the North West shelf: %s' %scenario_name.title() 71 71 72 is_parallel = False 73 if is_parallel == True: 74 nodes = 8 75 72 76 # WA DLI data 73 77 production_dirs = {'20060707_001859': 'MSL', … … 75 79 '20060707_003424': 'LAT'} 76 80 81 all_prod_dirs = [production_dirs] 82 77 83 max_maps = {'MSL': 'MSL_map', 78 84 'HAT': 'HAT_map', … … 83 89 # Create sections and graphs for each designated production directory 84 90 latex_output = [] 91 report_name = 'latexoutput' 85 92 swwfiles = {} 86 for label_id in production_dirs.keys(): 87 88 file_loc = project.outputdir + label_id + sep 89 swwfile = file_loc + project.basename + '.sww' 90 swwfiles[swwfile] = label_id 91 92 texname, elev_output = sww2timeseries(swwfiles, 93 project.gauge_filename, 94 production_dirs, 95 report = True, 96 reportname = 'latexoutput', 97 plot_quantity = ['stage', 'speed'], 98 surface = False, 99 time_min = None, 100 time_max = None, 101 title_on = False, 102 verbose = True) 103 104 latex_output.append(texname) 105 93 if is_parallel == True: 94 95 for j, production_dirs in enumerate(all_prod_dirs): 96 97 for i in range(nodes): 98 print 'Sending node %d of %d' %(i,nodes) 99 swwfiles = {} 100 reportname = report_name + '%s' + 'rp%s' %(i,j) 101 102 for label_id in production_dirs.keys(): 103 file_loc = project.output_dir + label_id + sep 104 sww_extra = '_P%s_%s' %(i,nodes) 105 swwfile = file_loc + project.basename + sww_extra + '.sww' 106 #swwfile = file_loc + project.scenario_name + sww_extra + '.sww' 107 swwfiles[swwfile] = label_id 108 109 texname, elev_output = sww2timeseries(swwfiles, 110 project.gauge_filename, 111 production_dirs, 112 report = True, 113 reportname = reportname, 114 plot_quantity = ['stage', 'momentum'], 115 surface = False, 116 time_min = None, 117 time_max = None, 118 title_on = False, 119 verbose = True) 120 121 latex_output.append(texname) 122 123 else: 124 125 for i, production_dirs in enumerate(all_prod_dirs): 126 127 swwfiles = {} 128 reportname = report_name + 'rp%s' %(i) 129 130 for label_id in production_dirs.keys(): 131 132 file_loc = project.outputdir + label_id + sep 133 swwfile = file_loc + project.basename + '.sww' 134 #swwfile = file_loc + project.scenario_name + sww_extra + '.sww' 135 swwfiles[swwfile] = label_id 136 137 texname, elev_output = sww2timeseries(swwfiles, 138 project.gauge_filename, 139 production_dirs, 140 report = True, 141 reportname = reportname, 142 plot_quantity = ['stage', 'speed'], 143 surface = False, 144 time_min = None, 145 time_max = None, 146 title_on = False, 147 verbose = True) 148 149 latex_output.append(texname) 150 106 151 # Start report generation 107 152 # Future: generate_report(reportdir, scenario, report_title, … … 139 184 \usepackage{setspace} 140 185 \usepackage{rotating} 186 \usepackage{pdfpages} 141 187 \include{appendix} 142 188 \setstretch{1.25} … … 151 197 fid.write(s) 152 198 153 #s = '\\title{%s} \n' %report_title154 #fid.write(s)155 156 199 s = """ 157 200 \date{\\today} … … 174 217 \input{execsum} 175 218 219 \clearpage 220 176 221 \\tableofcontents 177 222 … … 191 236 \label{sec:data} 192 237 \input{data} 193 194 \section{Inundation model}195 \label{sec:anuga}196 \input{anuga}197 \input{computational_setup}198 238 199 239 \section{Inundation modelling results} … … 202 242 """ 203 243 fid.write(s) 244 245 s = '\input{interpretation} \n' 246 fid.write(s) 247 248 # Assign titles to each production section 249 # Must specify one name per section 250 for i, max_maps in enumerate(all_maps): 251 252 s = '\subsection{Return Period: %s years} \n \n' %return_periods[i] 253 fid.write(s) 254 255 production_dirs = all_prod_dirs[i] 256 for i, name in enumerate(production_dirs.keys()): 257 258 s = '\input{%s} \n \clearpage \n \n' %max_maps[production_dirs[name]] 259 fid.write(s) 204 260 205 261 # Generate latex output for location points 206 262 s = '\\begin{table} \\begin{center} \n' 207 263 fid.write(s) 208 s = '\caption{Defined point locations for %s study area.}' %scenario_name 264 s = '\caption{Defined point locations for %s study area.}' %scenario_name.title() 209 265 fid.write(s) 210 266 s = """ … … 226 282 fid.write(s) 227 283 228 s = '\\begin{sidewaysfigure} \n \centerline{ \includegraphics[width=\paperwidth]{../report_figures/%s}}' %gauge_map 284 #s = '\\begin{figure}[h] \n \centerline{ \includegraphics[width=\paperwidth]{../report_figures/%s}}' %gauge_map 285 s = '\\begin{figure}[h] \n \centerline{ \includegraphics[scale=0.7]{../report_figures/%s}}' %gauge_map 229 286 fid.write(s) 230 287 … … 232 289 \caption{Point locations used for Port Hedland study.} 233 290 \label{fig:points} 234 \end{sidewaysfigure} 235 """ 236 fid.write(s) 237 238 s = '\input{interpretation} \n' 239 fid.write(s) 240 241 # Assign titles to each production section 242 # Must specify one name per section 243 for i, name in enumerate(production_dirs.keys()): 244 # 245 # s = '\subsection{%s} \n \n' %production_dirs[name] 246 # fid.write(s) 247 248 s = '\input{%s} \n \clearpage \n \n' %max_maps[production_dirs[name]] 249 fid.write(s) 291 \end{figure} 292 293 \clearpage 294 """ 295 fid.write(s) 250 296 251 297 # Closing … … 258 304 fid.write(s) 259 305 260 #for i, name in enumerate(production_dirs.keys()): 261 262 # s = '\input{%s} \n \clearpage \n \n' %damage_maps[production_dirs[name]] 263 # fid.write(s) 264 265 s = """ 306 s = """ 307 % \section{Impact due to data accuracy} 308 % \input{discussion} 309 % \label{sec:issues} 310 266 311 \section{Summary} 267 312 \label{sec:summary} 268 313 \input{summary} 314 315 \section{Acknowledgements} 316 \input{acknowledgements} 269 317 270 318 \input{references} 319 320 \clearpage 271 321 272 322 \\appendix … … 286 336 \section{Time series} 287 337 \label{sec:timeseries} 288 """ 289 fid.write(s) 290 291 s = '\input{%s} \n \clearpage \n \n' %latex_output[0] 292 fid.write(s) 338 \input{timeseriesdiscussion} 339 \clearpage 340 """ 341 fid.write(s) 342 343 for i in range(len(latex_output)): 344 if latex_output[i] <> '': 345 s = '\subsection{Return Period: %s years} \n' %return_periods[i] 346 fid.write(s) 347 s = '\input{%s} \n \clearpage \n \n' %latex_output[i] 348 fid.write(s) 293 349 294 350 s=""" 295 296 \pagebreak297 351 298 352 \section{Damage modelling inputs} -
anuga_work/production/pt_hedland_2006/report/damage_inputs.tex
r3394 r4151 1 \begin{table}[ p]1 \begin{table}[h] 2 2 \begin{center} 3 3 \caption{Framed residential building collapse probability. $h$ is the … … 16 16 \end{table} 17 17 18 \begin{table} 18 \begin{table}[h] 19 19 \begin{center} 20 20 \caption{Mortality and injury state probability} … … 34 34 \end{table} 35 35 36 \begin{table} 36 \begin{table}[h] 37 37 \begin{center} 38 38 \caption{Injury level classificationse. Floor height is assumed to be 30cm} -
anuga_work/production/pt_hedland_2006/report/execsum.tex
r3479 r4151 1 1 This report is being provided to the Fire and Emergency Services Authority 2 2 (FESA) as part of the Collaborative Research Agreement (CRA) 3 with Geoscience Australia (GA) .4 FESA recognisesthe potential vulnerability of the Western Australia5 coastline to tsunami genic earthquakes originating from6 the Sunda Arc subduction zone that caused the December 2004 event.7 There is historic evidence of tsunami eventsaffecting the3 with Geoscience Australia (GA), Tsunami Impact Modelling for WA. 4 FESA has recognised the potential vulnerability of the Western Australia 5 coastline to tsunami originating from earthquakes on 6 the Sunda Arc subduction zone. 7 There is historic evidence of tsunami affecting the 8 8 Western Australia coastline, \cite{CB:ausgeo}, 9 9 and FESA has sought to assess … … 11 11 threat and develop detailed response plans for a range of plausible events. 12 12 13 This report describes the modelling methodology and initial results 14 for a specific tsunami-genic event as it impacts the Port Hedland township 15 and its surrounds. In particular, maximum inundation maps are shown 16 and discussed for the event occurring at mean sea level as well as highest and lowest astronomical tide. 17 The inundation results allow estimation of the number of houses inundated and collapsed, as well as 13 This report describes the modelling methodology and results 14 for a number of tsunami-genic events with varied return periods 15 as they impact the Port Hedland region. 16 In particular, maximum inundation maps are shown 17 and discussed 18 for the event occurring at mean sea level as well as 19 highest and lowest astronomical tide. The inundation results allow 20 estimation of the number of houses inundated and collapsed, as well as 18 21 the numbers of persons affected. 19 For this specific event at high tide, one house is inundated and there are no injuries.20 22 21 Future studies 22 will present a series of scenarios for a range of return periods to 23 assist FESA in developing appropriate plans for a range of event impacts. 24 This will also allow an assessment of the relative tsunami risk 23 The results of this study will allow an assessment of the relative tsunami risk 25 24 to communities along the NW Shelf of WA. 26 25 This report and the decision support tool are the 27 June 200 6 deliverables of the Collaborative Research Agreement,28 Tsunami Impact Modelling for WA,between FESA and GA.26 June 2007 deliverables of the Collaborative Research Agreement 27 between FESA and GA. 29 28 30 29 30 -
anuga_work/production/pt_hedland_2006/report/interpretation.tex
r3477 r4151 1 The main features of the 2 tsunami wave and resultant inundation ashore is described in this section. 3 We have 4 chosen a number of locations to illustrate the features 5 of the tsunami as it approaches and impacts Port Hedland. 6 These locations have been chosen as we believe they would 7 either be critical 8 in an emergency situation, (e.g. the hospital) or 9 effect recovery efforts, (e.g. the airport and wharfs). These locations 10 are described in Table \ref{table:locations} and shown in 11 Figure \ref{fig:points}. The water's stage and speed 12 at each of these locations are shown 13 as a function of time in the series of graphs shown in 14 Appendix \ref{sec:timeseries}. It is assumed that the earthquake is 15 generated at the beginning of the simulation, i.e. time = 0 minutes. 16 Stage is defined as the absolute 17 water level (in metres) relative to AHD 18 \footnote{For an offshore location such as Middle Channel, 19 the initial water level will be that of the tidal scenario. In the 20 case of MSL, this water level will be 0. As the tsunami wave moves 21 through this point, the water height may grow and thus the stage will 22 represent the amplitude of the wave. For an onshore location such as the 23 Hospital, the actual water depth will be the difference between 24 the stage and the elevation at that point. Therefore, at the beginning 25 of the simulation, there will be no water onshore and therefore 26 the stage and the elevation will be identical.}. Both stage and speed 27 (in metres/second) for 28 each scenario (HAT, MSL and LAT) are shown 29 on consistent scales to allow comparison between point locations. 30 As a useful benchmark, Table \ref{table:speedexamples} 31 describes typical examples for a range of speeds found in the 32 simulations. 33 34 \begin{table}[h] 35 \label{table:speedexamples} 36 \caption{Examples of a range of velocities.} 37 \begin{center} 38 \begin{tabular}{|l|l|}\hline 39 {\bf Velocity (m/s)} & {\bf Example} \\ \hline 40 1 & leisurely stroll pace\\ \hline 41 1.5 & average walking pace \\ \hline 42 %2 & 100m Olympic male freestyle \\ \hline 43 %3 & mackeral \\ \hline 44 4 & average person can maintain running for 1000m \\ \hline 45 %5 & blue whale \\ \hline 46 10 & 100m Olympic male sprinter \\ \hline 47 16 & car travelling in urban zones (60 km/hr) \\ \hline 48 \end{tabular} 49 \end{center} 50 \end{table} 51 52 A tsunami wave typically has a small amplitude and typically travels at 53 100's of kilometres per hour. 54 The low amplitude complicates the ability to detect 55 the wave. As the water depth decreases, 56 the speed of the wave 57 decreases and the amplitude grows. Another important feature of tsunamis 58 is drawdown. This means that the water is seen to retreat from the beaches 59 before a tsunami wave 60 impacts that location. Other features 61 include reflections (where the wave is redirected due to the 62 influence 63 of the coast) and shoaling (where the wave's amplitude is amplified 64 close to the coast due to wave interactions). 65 These features are seen in the MSL scenario; 66 there is a small wave, followed 67 by a large drawdown and then a large secondary wave. 68 There are variations in the behaviour for the 69 HAT and LAT scenarios, and these will be explained below. 70 71 The features described above will be 72 illustrated for the MSL case by the Middel Channel location, 73 Figure \ref{fig:gaugeMiddleChannel}. 74 The first, small wave can be seen at around 230 mins (shown in red), 75 with an amplitude of around 0.3 m\footnote{In this 76 scenario, the initial water level is 0 m, which means that 77 the actual amplitude is the difference between the stage value 78 and the initial water level; 0.3 - 0}. 79 The drawdown of around 2.6 m (i.e. 0.27 - -2.37) then occurs at around 270 mins 80 (i.e. 4.5 hours after the event has been generated), before 81 the second wave arrives at around 280 mins 82 with an amplitude of around 1.8 m (i.e. 1.8 - 0). Subsequent waves 83 are evident with decreased amplitudes. 84 These features are replicated at each of the offshore points (those 85 points with negative elevation as shown in Table \ref{table:locations}). 86 The speed of the tsunami wave is greatest for those locations 87 in shallowest water. Middle Channel is in shallower water 88 than Mt Goldworthy Wharf - Berth 89 and the maximum speeds measured are 1.93 m/s and 2.9 m/s respectively. 90 91 There are variations in these behaviours for the HAT and LAT scenarios. 92 Referring again to the Middle Channel location (Figure 93 \ref{fig:gaugeMiddleChannel}), 94 95 {\bf stuff to write in here about the HAT, LAT scenarios } 1 The inundation extent calculated at Port Hedland will be described in this section with 2 impact assessments following in Section \ref{sec:impact}. 3 % there will need to be something in here for when doing a range of events for each return period. 4 Figures \ref{fig:HAT_max_inundation}, \ref{fig:MSL_max_inundation} and 5 \ref{fig:LAT_max_inundation} illustrate the maximum inundation extent 6 for the Mw 9 event occurring at HAT, MSL and LAT respectively. 7 As expected, there is greater inundation for the HAT scenario with increased 8 extent. The major road from the south, 9 the Great Northern Highway, remains free of inundation for all tidal 10 scenarios. At HAT, the road feeding off the highway, Anderson Street, 11 suffers inundation in the tidal flat region. The inundation would 12 be enough to halt usage of the road. 13 The road servicing Finucane Station remains 14 free of inundation, however there is a small section of the railway which 15 receives under 0.2 m of water. Likewise, there 16 is inundation on a section of the railway which services Port Hedland Station. 17 There is not enough information regarding 18 the railway structure to determine whether it would halt its usage (i.e. how 19 high has it been built). The airport remains 20 free of inundation for each tidal scenario. 96 21 97 22 The geography of the Port Hedland area has played a role in offering … … 110 35 the region past the east of the headland. 111 36 112 The tsunami wave has an amplitude of around 0.3 m for the MSL 113 scenario as it enters the 114 channel (Figure \ref{fig:gaugeMiddleChannel}. There seems to be 115 limited or no amplification of the tsunami wave as it moves into 116 the channel. The amplitude of the first tsunami wave is around 0.3 m at 117 the Mt Goldworthy Wharf - Berth location (shown in red in Figure 118 \ref{fig:gaugeMtGoldworthyWharf-Berth} and the maximum amplitude 119 is around 1.7 m. At MSL and LAT, there is limited inundation in the 120 areas surrounding the channel. At HAT, significantly increased 121 inundation is evident surrounding the channel, however, this inundation 122 is essentially caught in the tidal flat regions. 123 124 As expected, there is greater inundation for the HAT scenario with increased 125 extent, with minimal inundation found at the locations chosen. 126 The major road from the south, 127 the Great Northern Highway, remains free of inundation for all tidal 128 scenarios. At HAT, the road feeding off the highway, Anderson Street, 129 suffers inundation in the tidal flat region. The inundation would 130 be enough to halt usage of the road. 131 The road servicing Finucane Station remains 132 free of inundation, however there is a small section of the railway which 133 receives under 0.2 m of water. Likewise, there 134 is inundation on a section of the railway which services Port Hedland Station. 135 There is not enough information regarding 136 the railway structure to determine whether it would halt its usage (i.e. how 137 high has it been built). The airport remains 138 free of inundation for each tidal scenario. Section \ref{sec:impact} 139 details the impact estimates to the residential infrastructure. 37 In addition to describing the maximum inundation extent, 38 we have 39 chosen a number of locations to illustrate the features 40 of the tsunami as it approaches and impacts Port Hedland. 41 These locations have been chosen as we believe they would 42 either be critical 43 in an emergency situation, (e.g. the hospital) or 44 effect recovery efforts, (e.g. the airport and wharfs). These locations 45 are described in Table \ref{table:locations} and shown in 46 Figure \ref{fig:points}. The water's stage and speed 47 at each of these locations are shown 48 as a function of time in the series of graphs shown in 49 Appendix \ref{sec:timeseries}. Discussion of the main features of the 50 tsunami wave is also described in Appendix \ref{sec:timeseries}. -
anuga_work/production/pt_hedland_2006/report/introduction.tex
r3380 r4151 23 23 detailing critical infrastructure as well as damage modelling estimates. 24 24 25 This report is the first in a series of tsunami assessments 26 of the North West Shelf. The scenario used for this study has 27 an unknown return period, but considered a plausible event (see 28 Section \ref{sec:tsunamiscenario}). 29 Subsequent assessments will use refined hazard models with 30 associate return rates for other localities, as advised by FESA. 25 This report details the impact assessments for a range of tsunami events. 26 These events are based on the probabilistic hazard assessment conducted 27 for the Western Australian coastline. A number of events are selected for 28 return periods of 500, 1000 and 2000 years, see Section \ref{sec:tsunamiscenario}. 29 31 30 Port Hedland has a population of around 42000 (including South Hedland) and 32 31 is part of the Pilbara region of Western Autralia … … 37 36 38 37 The modelling technique to simulate the 39 impact ashore will be discussed in Section \ref{sec:anuga} and data inputs 40 discussed in Section \ref{sec:data}. 38 impact ashore will be discussed in Section \ref{sec:methodology} and 39 event and data inputs 40 discussed in Sections \ref{sec:tsunamiscenario} and \ref{sec:data} respectively. 41 41 The inundation results are presented and discussed in Section \ref{sec:results} 42 42 and the impact modelling results outlined in Section \ref{sec:impact}. -
anuga_work/production/pt_hedland_2006/report/metadata.tex
r2950 r4151 1 2 to be provided by Hamish and Kathryn 1 %\includepdf[pages={1-6}]{MetadataforATWSPortHedlandScenario} -
anuga_work/production/pt_hedland_2006/report/references.tex
r3477 r4151 12 12 Tsunami (MOST) model, NOAA Technical Memorandum ERL PMEL-112. 13 13 14 %\bibitem{somerville:urs} Somerville, P., Thio, H.K. and Ichinose, G. (2005) 15 %Probabilistic Tsunami Hazard Analysis. Report delivered to Geoscience 16 %Australia 2005. 14 \bibitem{prob:fesa} Burbidge, D. and Cummins, P. (2006) Probabilistic 15 Tsunami Hazard Assessment of Western Australia. Report to the 16 Fire and Emergency Services Authority of Western Australia. 17 18 \bibitem{somerville:urs} Somerville, P., Thio, H.K. and Ichinose, G. (2005) 19 Probabilistic Tsunami Hazard Analysis. Report delivered to Geoscience 20 Australia 2005. 17 21 18 22 \bibitem{matsuyama:1999} … … 46 50 HAZUS-MH User Manual, Washington DC, USA. 47 51 52 \bibitem{uq:friction} Duncan - do you have a reference for this? 53 48 54 \end{thebibliography} -
anuga_work/production/pt_hedland_2006/report/tsunami_scenario.tex
r3375 r4151 1 The tsunamigenic event used in this report was developed for a2 preliminary tsunami hazard assessment study delivered by GA3 to FESA in September 20054 \cite{BC:FESA}. In the assessment, a suite of Mw 9 earthquakes5 were evenly spaced along the Sunda Arc subduction zone and there6 was no consideration of the likelihood of each event.7 Other less likely sources were not considered, such8 as intra-plate earthquakes near the WA coast, volcanoes, landslides9 or asteroids.10 In the preliminary assessment,11 the maximum magnitude of earthquakes off Java was considered to be12 at least 8.5 and could potentially be as high as 9.13 1 14 FESA is interested in the ``most frequent worst case scenario''. Whilst15 we currently cannot determine exactly what that event may be, the Mw 9 event16 provides a plausible worst case scenario. To understand the17 frequency of these tsunami-genic events,18 GA is building probabilistic19 models to develop a more complete tsunami hazard assessment20 for the Sunda Arc subduction zone,21 due for completion in late 2006. In the preliminary assessment for22 example, it was suggested that while Mw 7 and 8 earthquakes are expected23 to occur with a greater frequency than Mw 9 events,24 they are likely to pose a comparatively low and more localised hazard to WA.25 26 Figure \ref{fig:mw9} shows the maximum wave height of a tsunami initiated27 by a Mw 9 event off28 the coast of Java. This event provides the source and29 boundary condition to the30 inundation model presented in Section \ref{sec:anuga}.31 32 33 \begin{figure}[hbt]34 35 \centerline{ \includegraphics[width=100mm, height=75mm]36 {../report_figures/mw9.jpg}}37 38 \caption{Maximum wave height (in cms) for a Mw 9 event off the39 coast of Java}40 \label{fig:mw9}41 \end{figure}
Note: See TracChangeset
for help on using the changeset viewer.