Ignore:
Timestamp:
Jan 9, 2007, 3:26:53 PM (18 years ago)
Author:
sexton
Message:

(1) updates to make_report script to handle multiple events for multiple return periods (2) take Onslow changes through to Port Hedland and Dampier

Location:
anuga_work/production/pt_hedland_2006
Files:
2 added
2 deleted
8 edited

Legend:

Unmodified
Added
Removed
  • anuga_work/production/pt_hedland_2006/make_report.py

    r4134 r4151  
    5252from os import getcwd, sep, altsep, mkdir, access, F_OK
    5353import project
    54 from anuga.pyvolution.util import sww2timeseries, get_gauges_from_file
     54from anuga.abstract_2d_finite_volumes.util import sww2timeseries, get_gauges_from_file
    5555
    5656# Derive scenario name
     
    7070report_title = 'Tsunami impact modelling for the North West shelf: %s' %scenario_name.title()
    7171
     72is_parallel = False
     73if is_parallel == True:
     74    nodes = 8
     75   
    7276# WA DLI data
    7377production_dirs = {'20060707_001859': 'MSL',
     
    7579                   '20060707_003424': 'LAT'}
    7680
     81all_prod_dirs = [production_dirs]
     82
    7783max_maps = {'MSL': 'MSL_map',
    7884            'HAT': 'HAT_map',
     
    8389# Create sections and graphs for each designated production directory
    8490latex_output = []
     91report_name = 'latexoutput'
    8592swwfiles = {}
    86 for label_id in production_dirs.keys():
    87    
    88     file_loc = project.outputdir + label_id + sep
    89     swwfile = file_loc + project.basename + '.sww'
    90     swwfiles[swwfile] = label_id
    91 
    92 texname, elev_output = sww2timeseries(swwfiles,
    93                                       project.gauge_filename,
    94                                       production_dirs,
    95                                       report = True,
    96                                       reportname = 'latexoutput',
    97                                       plot_quantity = ['stage', 'speed'],
    98                                       surface = False,
    99                                       time_min = None,
    100                                       time_max = None,
    101                                       title_on = False,
    102                                       verbose = True)
    103 
    104 latex_output.append(texname)
    105 
     93if is_parallel == True:
     94
     95    for j, production_dirs in enumerate(all_prod_dirs):
     96       
     97        for i in range(nodes):
     98            print 'Sending node %d of %d' %(i,nodes)
     99            swwfiles = {}
     100            reportname = report_name + '%s' + 'rp%s' %(i,j)
     101           
     102            for label_id in production_dirs.keys():
     103                file_loc = project.output_dir + label_id + sep
     104                sww_extra = '_P%s_%s' %(i,nodes)
     105                swwfile = file_loc + project.basename + sww_extra + '.sww'
     106                #swwfile = file_loc + project.scenario_name + sww_extra + '.sww'
     107                swwfiles[swwfile] = label_id
     108
     109                texname, elev_output = sww2timeseries(swwfiles,
     110                                                      project.gauge_filename,
     111                                                      production_dirs,
     112                                                      report = True,
     113                                                      reportname = reportname,
     114                                                      plot_quantity = ['stage', 'momentum'],
     115                                                      surface = False,
     116                                                      time_min = None,
     117                                                      time_max = None,
     118                                                      title_on = False,
     119                                                      verbose = True)
     120               
     121                latex_output.append(texname)
     122   
     123else:
     124
     125    for i, production_dirs in enumerate(all_prod_dirs):
     126
     127        swwfiles = {}
     128        reportname = report_name + 'rp%s' %(i)
     129       
     130        for label_id in production_dirs.keys():
     131
     132            file_loc = project.outputdir + label_id + sep
     133            swwfile = file_loc + project.basename + '.sww'
     134            #swwfile = file_loc + project.scenario_name + sww_extra + '.sww'
     135            swwfiles[swwfile] = label_id
     136           
     137        texname, elev_output = sww2timeseries(swwfiles,
     138                                              project.gauge_filename,
     139                                              production_dirs,
     140                                              report = True,
     141                                              reportname = reportname,
     142                                              plot_quantity = ['stage', 'speed'],
     143                                              surface = False,
     144                                              time_min = None,
     145                                              time_max = None,
     146                                              title_on = False,
     147                                              verbose = True)
     148       
     149        latex_output.append(texname)
     150   
    106151# Start report generation
    107152# Future: generate_report(reportdir, scenario, report_title,
     
    139184\usepackage{setspace}
    140185\usepackage{rotating}
     186\usepackage{pdfpages}
    141187\include{appendix}
    142188\setstretch{1.25}
     
    151197fid.write(s)
    152198
    153 #s = '\\title{%s} \n' %report_title
    154 #fid.write(s)
    155 
    156199s = """
    157200\date{\\today}
     
    174217  \input{execsum}
    175218
     219\clearpage
     220
    176221  \\tableofcontents
    177222 
     
    191236    \label{sec:data}
    192237    \input{data}
    193    
    194    \section{Inundation model}
    195     \label{sec:anuga}
    196     \input{anuga}
    197     \input{computational_setup}
    198238       
    199239  \section{Inundation modelling results}
     
    202242"""
    203243fid.write(s)
     244   
     245s = '\input{interpretation} \n'
     246fid.write(s)
     247
     248# Assign titles to each production section
     249# Must specify one name per section
     250for i, max_maps in enumerate(all_maps):
     251
     252    s = '\subsection{Return Period: %s years} \n \n' %return_periods[i]     
     253    fid.write(s)
     254
     255    production_dirs = all_prod_dirs[i]
     256    for i, name in enumerate(production_dirs.keys()):
     257
     258        s = '\input{%s} \n \clearpage \n \n' %max_maps[production_dirs[name]]
     259        fid.write(s)
    204260
    205261# Generate latex output for location points
    206262s = '\\begin{table} \\begin{center} \n'
    207263fid.write(s)
    208 s = '\caption{Defined point locations for %s study area.}' %scenario_name
     264s = '\caption{Defined point locations for %s study area.}' %scenario_name.title()
    209265fid.write(s)
    210266s = """
     
    226282fid.write(s)
    227283
    228 s = '\\begin{sidewaysfigure} \n \centerline{ \includegraphics[width=\paperwidth]{../report_figures/%s}}' %gauge_map
     284#s = '\\begin{figure}[h] \n \centerline{ \includegraphics[width=\paperwidth]{../report_figures/%s}}' %gauge_map
     285s = '\\begin{figure}[h] \n \centerline{ \includegraphics[scale=0.7]{../report_figures/%s}}' %gauge_map
    229286fid.write(s)
    230287
     
    232289\caption{Point locations used for Port Hedland study.} 
    233290\label{fig:points}
    234 \end{sidewaysfigure}
    235 """
    236 fid.write(s)
    237    
    238 s = '\input{interpretation} \n'
    239 fid.write(s)
    240 
    241 # Assign titles to each production section
    242 # Must specify one name per section
    243 for i, name in enumerate(production_dirs.keys()):
    244 #
    245 #    s = '\subsection{%s} \n \n' %production_dirs[name]     
    246 #    fid.write(s)
    247 
    248     s = '\input{%s} \n \clearpage \n \n' %max_maps[production_dirs[name]]
    249     fid.write(s)
     291\end{figure}
     292
     293\clearpage
     294"""
     295fid.write(s)
    250296
    251297# Closing
     
    258304fid.write(s)
    259305
    260 #for i, name in enumerate(production_dirs.keys()):
    261 
    262 #    s = '\input{%s} \n \clearpage \n \n' %damage_maps[production_dirs[name]]
    263 #    fid.write(s)
    264 
    265 s = """
     306s = """
     307  % \section{Impact due to data accuracy}
     308  %   \input{discussion}
     309  %   \label{sec:issues}
     310
    266311     \section{Summary}
    267312     \label{sec:summary}
    268313     \input{summary}
     314
     315     \section{Acknowledgements}
     316     \input{acknowledgements}
    269317     
    270318    \input{references}
     319
     320\clearpage
    271321
    272322    \\appendix
     
    286336   \section{Time series}
    287337     \label{sec:timeseries}
    288 """
    289 fid.write(s)
    290 
    291 s = '\input{%s} \n \clearpage \n \n' %latex_output[0]
    292 fid.write(s)
     338     \input{timeseriesdiscussion}
     339     \clearpage
     340"""
     341fid.write(s)
     342
     343for i in range(len(latex_output)):
     344    if latex_output[i] <> '':
     345        s = '\subsection{Return Period: %s years} \n' %return_periods[i]
     346        fid.write(s)
     347        s = '\input{%s} \n \clearpage \n \n' %latex_output[i]   
     348        fid.write(s)
    293349
    294350s="""
    295 
    296 \pagebreak
    297351
    298352   \section{Damage modelling inputs}
  • anuga_work/production/pt_hedland_2006/report/damage_inputs.tex

    r3394 r4151  
    1 \begin{table}[p]
     1\begin{table}[h]
    22\begin{center}
    33\caption{Framed residential building collapse probability. $h$ is the
     
    1616\end{table}
    1717
    18 \begin{table}
     18\begin{table}[h]
    1919\begin{center}
    2020\caption{Mortality and injury state probability}
     
    3434\end{table}
    3535
    36 \begin{table}
     36\begin{table}[h]
    3737\begin{center}
    3838\caption{Injury level classificationse. Floor height is assumed to be 30cm}
  • anuga_work/production/pt_hedland_2006/report/execsum.tex

    r3479 r4151  
    11This report is being provided to the Fire and Emergency Services Authority
    22(FESA) as part of the Collaborative Research Agreement (CRA)
    3 with Geoscience Australia (GA).
    4 FESA recognises the potential vulnerability of the Western Australia
    5 coastline to tsunamigenic earthquakes originating from
    6 the Sunda Arc subduction zone that caused the December 2004 event.
    7 There is historic evidence of tsunami events affecting the
     3with Geoscience Australia (GA), Tsunami Impact Modelling for WA.
     4FESA has recognised the potential vulnerability of the Western Australia
     5coastline to tsunami originating from earthquakes on
     6the Sunda Arc subduction zone.
     7There is historic evidence of tsunami affecting the
    88Western Australia coastline, \cite{CB:ausgeo},
    99and FESA has sought to assess
     
    1111threat and develop detailed response plans for a range of plausible events.
    1212
    13 This report describes the modelling methodology and initial results
    14 for a specific tsunami-genic event as it impacts the Port Hedland township
    15 and its surrounds. In particular, maximum inundation maps are shown
    16 and discussed for the event occurring at mean sea level as well as highest and lowest astronomical tide.
    17 The inundation results allow estimation of the number of houses inundated and collapsed, as well as
     13This report describes the modelling methodology and results
     14for a number of tsunami-genic events with varied return periods
     15as they impact the Port Hedland region.
     16In particular, maximum inundation maps are shown
     17and discussed
     18for the event occurring at mean sea level as well as
     19highest and lowest astronomical tide. The inundation results allow
     20estimation of the number of houses inundated and collapsed, as well as
    1821the numbers of persons affected.
    19 For this specific event at high tide, one house is inundated and there are no injuries.
    2022
    21 Future studies
    22 will present a series of scenarios for a range of return periods to
    23 assist FESA in developing appropriate plans for a range of event impacts.
    24 This will also allow an assessment of the relative tsunami risk
     23The results of this study will allow an assessment of the relative tsunami risk
    2524to communities along the NW Shelf of WA.
    2625This report and the decision support tool are the
    27 June 2006 deliverables of the Collaborative Research Agreement,
    28 Tsunami Impact Modelling for WA, between FESA and GA.
     26June 2007 deliverables of the Collaborative Research Agreement
     27between FESA and GA.
    2928
    3029
     30
  • anuga_work/production/pt_hedland_2006/report/interpretation.tex

    r3477 r4151  
    1 The main features of the
    2 tsunami wave and resultant inundation ashore is described in this section.
    3 We have
    4 chosen a number of locations to illustrate the features
    5 of the tsunami as it approaches and impacts Port Hedland.
    6 These locations have been chosen as we believe they would
    7 either be critical
    8 in an emergency situation, (e.g. the hospital) or
    9 effect recovery efforts, (e.g. the airport and wharfs). These locations
    10 are described in Table \ref{table:locations} and shown in
    11 Figure \ref{fig:points}. The water's stage and speed
    12 at each of these locations are shown
    13 as a function of time in the series of graphs shown in
    14 Appendix \ref{sec:timeseries}. It is assumed that the earthquake is
    15 generated at the beginning of the simulation, i.e. time = 0 minutes.
    16 Stage is defined as the absolute
    17 water level (in metres) relative to AHD
    18 \footnote{For an offshore location such as Middle Channel,
    19 the initial water level will be that of the tidal scenario. In the
    20 case of MSL, this water level will be 0. As the tsunami wave moves
    21 through this point, the water height may grow and thus the stage will
    22 represent the amplitude of the wave. For an onshore location such as the
    23 Hospital, the actual water depth will be the difference between
    24 the stage and the elevation at that point. Therefore, at the beginning
    25 of the simulation, there will be no water onshore and therefore
    26 the stage and the elevation will be identical.}. Both stage and speed
    27 (in metres/second) for
    28 each scenario (HAT, MSL and LAT) are shown
    29 on consistent scales to allow comparison between point locations.
    30 As a useful benchmark, Table \ref{table:speedexamples}
    31 describes typical examples for a range of speeds found in the
    32 simulations.
    33 
    34 \begin{table}[h]
    35 \label{table:speedexamples}
    36 \caption{Examples of a range of velocities.}
    37 \begin{center}
    38 \begin{tabular}{|l|l|}\hline
    39 {\bf Velocity (m/s)} & {\bf Example} \\ \hline
    40 1 & leisurely stroll pace\\ \hline
    41 1.5 & average walking pace \\ \hline
    42 %2 & 100m Olympic male freestyle \\ \hline
    43 %3 & mackeral \\ \hline
    44 4 & average person can maintain running for 1000m \\ \hline
    45 %5 & blue whale \\ \hline
    46 10 & 100m Olympic male sprinter \\ \hline
    47 16 & car travelling in urban zones (60 km/hr) \\ \hline
    48 \end{tabular}
    49 \end{center}
    50 \end{table}
    51 
    52 A tsunami wave typically has a small amplitude and typically travels at
    53 100's of kilometres per hour.
    54 The low amplitude complicates the ability to detect
    55 the wave. As the water depth decreases,
    56 the speed of the wave
    57 decreases and the amplitude grows. Another important feature of tsunamis
    58 is drawdown. This means that the water is seen to retreat from the beaches
    59 before a tsunami wave
    60 impacts that location. Other features
    61 include reflections (where the wave is redirected due to the
    62 influence
    63 of the coast) and shoaling (where the wave's amplitude is amplified
    64 close to the coast due to wave interactions).
    65 These features are seen in the MSL scenario;
    66 there is a small wave, followed
    67 by a large drawdown and then a large secondary wave.
    68 There are variations in the behaviour for the
    69 HAT and LAT scenarios, and these will be explained below.
    70  
    71 The features described above will be
    72 illustrated for the MSL case by the Middel Channel location,
    73 Figure \ref{fig:gaugeMiddleChannel}.
    74 The first, small wave can be seen at around 230 mins (shown in red),
    75 with an amplitude of around 0.3 m\footnote{In this
    76 scenario, the initial water level is 0 m, which means that
    77 the actual amplitude is the difference between the stage value
    78 and the initial water level; 0.3 - 0}.
    79 The drawdown of around 2.6 m (i.e. 0.27 - -2.37) then occurs at around 270 mins
    80 (i.e. 4.5 hours after the event has been generated), before
    81 the second wave arrives at around 280 mins
    82 with an amplitude of around 1.8 m (i.e. 1.8 - 0). Subsequent waves
    83 are evident with decreased amplitudes.
    84 These features are replicated at each of the offshore points (those
    85 points with negative elevation as shown in Table \ref{table:locations}).
    86 The speed of the tsunami wave is greatest for those locations
    87 in shallowest water. Middle Channel is in shallower water
    88 than Mt Goldworthy Wharf - Berth
    89 and the maximum speeds measured are 1.93 m/s and 2.9 m/s respectively.
    90 
    91 There are variations in these behaviours for the HAT and LAT scenarios.
    92 Referring again to the Middle Channel location (Figure
    93 \ref{fig:gaugeMiddleChannel}),
    94 
    95 {\bf stuff to write in here about the HAT, LAT scenarios }
     1The inundation extent calculated at Port Hedland will be described in this section with
     2impact assessments following in Section \ref{sec:impact}.
     3% there will need to be something in here for when doing a range of events for each return period.
     4Figures \ref{fig:HAT_max_inundation}, \ref{fig:MSL_max_inundation} and
     5\ref{fig:LAT_max_inundation} illustrate the maximum inundation extent
     6for the Mw 9 event occurring at HAT, MSL and LAT respectively.
     7As expected, there is greater inundation for the HAT scenario with increased
     8extent. The major road from the south,
     9the Great Northern Highway, remains free of inundation for all tidal
     10scenarios. At HAT, the road feeding off the highway, Anderson Street,
     11suffers inundation in the tidal flat region. The inundation would
     12be enough to halt usage of the road.
     13The road servicing Finucane Station remains
     14free of inundation, however there is a small section of the railway which
     15receives under 0.2 m of water. Likewise, there
     16is inundation on a section of the railway which services Port Hedland Station.
     17There is not enough information regarding
     18the railway structure to determine whether it would halt its usage (i.e. how
     19high has it been built). The airport remains
     20free of inundation for each tidal scenario.
    9621
    9722The geography of the Port Hedland area has played a role in offering
     
    11035the region past the east of the headland.
    11136
    112 The tsunami wave has an amplitude of around 0.3 m for the MSL
    113 scenario as it enters the
    114 channel (Figure \ref{fig:gaugeMiddleChannel}. There seems to be
    115 limited or no amplification of the tsunami wave as it moves into
    116 the channel. The amplitude of the first tsunami wave is around 0.3 m at
    117 the Mt Goldworthy Wharf - Berth location (shown in red in Figure
    118 \ref{fig:gaugeMtGoldworthyWharf-Berth} and the maximum amplitude
    119 is around 1.7 m. At MSL and LAT, there is limited inundation in the
    120 areas surrounding the channel. At HAT, significantly increased
    121 inundation is evident surrounding the channel, however, this inundation
    122 is essentially caught in the tidal flat regions.
    123 
    124 As expected, there is greater inundation for the HAT scenario with increased
    125 extent, with minimal inundation found at the locations chosen.
    126 The major road from the south,
    127 the Great Northern Highway, remains free of inundation for all tidal
    128 scenarios. At HAT, the road feeding off the highway, Anderson Street,
    129 suffers inundation in the tidal flat region. The inundation would
    130 be enough to halt usage of the road.
    131 The road servicing Finucane Station remains
    132 free of inundation, however there is a small section of the railway which
    133 receives under 0.2 m of water. Likewise, there
    134 is inundation on a section of the railway which services Port Hedland Station.
    135 There is not enough information regarding
    136 the railway structure to determine whether it would halt its usage (i.e. how
    137 high has it been built). The airport remains
    138 free of inundation for each tidal scenario. Section \ref{sec:impact}
    139 details the impact estimates to the residential infrastructure.
     37In addition to describing the maximum inundation extent,
     38we have
     39chosen a number of locations to illustrate the features
     40of the tsunami as it approaches and impacts Port Hedland.
     41These locations have been chosen as we believe they would
     42either be critical
     43in an emergency situation, (e.g. the hospital) or
     44effect recovery efforts, (e.g. the airport and wharfs). These locations
     45are described in Table \ref{table:locations} and shown in
     46Figure \ref{fig:points}. The water's stage and speed
     47at each of these locations are shown
     48as a function of time in the series of graphs shown in
     49Appendix \ref{sec:timeseries}. Discussion of the main features of the
     50tsunami wave is also described in Appendix \ref{sec:timeseries}.
  • anuga_work/production/pt_hedland_2006/report/introduction.tex

    r3380 r4151  
    2323detailing critical infrastructure as well as damage modelling estimates.
    2424
    25 This report is the first in a series of tsunami assessments
    26 of the North West Shelf. The scenario used for this study has
    27 an unknown return period, but considered a plausible event (see
    28 Section \ref{sec:tsunamiscenario}).
    29 Subsequent assessments will use refined hazard models with
    30 associate return rates for other localities, as advised by FESA.
     25This report details the impact assessments for a range of tsunami events.
     26These events are based on the probabilistic hazard assessment conducted
     27for the Western Australian coastline. A number of events are selected for
     28return periods of 500, 1000 and 2000 years, see Section \ref{sec:tsunamiscenario}.
     29
    3130Port Hedland has a population of around 42000 (including South Hedland) and
    3231is part of the Pilbara region of Western Autralia
     
    3736
    3837The modelling technique to simulate the
    39 impact ashore will be discussed in Section \ref{sec:anuga} and data inputs
    40 discussed in Section \ref{sec:data}.
     38impact ashore will be discussed in Section \ref{sec:methodology} and
     39event and data inputs
     40discussed in Sections \ref{sec:tsunamiscenario} and \ref{sec:data} respectively.
    4141The inundation results are presented and discussed in Section \ref{sec:results}
    4242and the impact modelling results outlined in Section \ref{sec:impact}.
  • anuga_work/production/pt_hedland_2006/report/metadata.tex

    r2950 r4151  
    1 
    2 to be provided by Hamish and Kathryn
     1%\includepdf[pages={1-6}]{MetadataforATWSPortHedlandScenario}
  • anuga_work/production/pt_hedland_2006/report/references.tex

    r3477 r4151  
    1212Tsunami (MOST) model, NOAA Technical Memorandum ERL PMEL-112.
    1313
    14 %\bibitem{somerville:urs} Somerville, P., Thio, H.K. and Ichinose, G. (2005)
    15 %Probabilistic Tsunami Hazard Analysis. Report delivered to Geoscience
    16 %Australia 2005.
     14\bibitem{prob:fesa} Burbidge, D. and Cummins, P. (2006) Probabilistic
     15Tsunami Hazard Assessment of Western Australia. Report to the
     16Fire and Emergency Services Authority of Western Australia.
     17
     18\bibitem{somerville:urs} Somerville, P., Thio, H.K. and Ichinose, G. (2005)
     19Probabilistic Tsunami Hazard Analysis. Report delivered to Geoscience
     20Australia 2005.
    1721
    1822\bibitem{matsuyama:1999}
     
    4650HAZUS-MH User Manual, Washington DC, USA.
    4751
     52\bibitem{uq:friction} Duncan - do you have a reference for this?
     53
    4854\end{thebibliography}
  • anuga_work/production/pt_hedland_2006/report/tsunami_scenario.tex

    r3375 r4151  
    1 The tsunamigenic event used in this report was developed for a
    2 preliminary tsunami hazard assessment study delivered by GA
    3 to FESA in September 2005
    4 \cite{BC:FESA}. In the assessment, a suite of Mw 9 earthquakes
    5 were evenly spaced along the Sunda Arc subduction zone and there
    6 was no consideration of the likelihood of each event.
    7 Other less likely sources were not considered, such
    8 as intra-plate earthquakes near the WA coast, volcanoes, landslides
    9 or asteroids.
    10 In the preliminary assessment,
    11 the maximum magnitude of earthquakes off Java was considered to be
    12 at least 8.5 and could potentially be as high as 9.
    131
    14 FESA is interested in the ``most frequent worst case scenario''. Whilst
    15 we currently cannot determine exactly what that event may be, the Mw 9 event
    16 provides a plausible worst case scenario. To understand the
    17 frequency of these tsunami-genic events,
    18 GA is building probabilistic
    19 models to develop a more complete tsunami hazard assessment
    20 for the Sunda Arc subduction zone,
    21 due for completion in late 2006. In the preliminary assessment for
    22 example, it was suggested that while Mw 7 and 8 earthquakes are expected
    23 to occur with a greater frequency than Mw 9 events,
    24 they are likely to pose a comparatively low and more localised hazard to WA.
    25 
    26 Figure \ref{fig:mw9} shows the maximum wave height of a tsunami initiated
    27 by a Mw 9 event off
    28 the coast of Java. This event provides the source and
    29 boundary condition to the
    30 inundation model presented in Section \ref{sec:anuga}.
    31 
    32 
    33 \begin{figure}[hbt]
    34 
    35   \centerline{ \includegraphics[width=100mm, height=75mm]
    36 {../report_figures/mw9.jpg}}
    37 
    38   \caption{Maximum wave height (in cms) for a Mw 9 event off the
    39 coast of Java}
    40   \label{fig:mw9}
    41 \end{figure}
Note: See TracChangeset for help on using the changeset viewer.