Changeset 4229


Ignore:
Timestamp:
Feb 6, 2007, 6:26:43 PM (18 years ago)
Author:
ole
Message:

Further thoughts on alpha in write-up

File:
1 edited

Legend:

Unmodified
Added
Removed
  • anuga_core/documentation/user_manual/old_pyvolution_documentation/limiting.tex

    r4215 r4229  
    136136is ignored we have immediately that
    137137\[
    138   \alpha = 1 \mbox{for} \hmin \ge \epsilon or dz=0
    139 \]
    140 where the maximal bed elevation range $dz$ is defined as
    141 \[
    142   dz = \max_i |z_i - z|
    143 \]
     138  \alpha = 1 \mbox{ for } \hmin \ge \epsilon %or dz=0
     139\]
     140%where the maximal bed elevation range $dz$ is defined as
     141%\[
     142%  dz = \max_i |z_i - z|
     143%\]
    144144
    145145If $\hmin < \epsilon$ we want to use the 'shallow' limiter just enough that
     
    149149\]
    150150or
    151 \[
     151\begin{equation}
    152152  \alpha(\tilde{h_i} - \bar{h_i}) > \epsilon - \bar{h_i}, \forall i
    153 \]
    154 Rearranging and solving for $\alpha$ one obtains the bound
    155 \[
    156   \alpha > \frac{\epsilon - \bar{h_i}}{\tilde{h_i} - \bar{h_i}}, \forall i
    157 \]
    158 
    159 Ensuring this holds true for all vertices on arrives at the definition
    160 \begin{equation}
    161   \alpha = \max_{i} \frac{\epsilon - \bar{h_i}}{\tilde{h_i} - \bar{h_i}}
     153  \label{eq:limiter bound}
    162154\end{equation}
    163 which will guarantee that no vertex 'cuts' through the bed.
     155
     156There are two cases:
     157\begin{enumerate}
     158  \item $\bar{h_i} \le \tilde{h_i}$: The deep water (limited using stage)
     159  vertex is at least as far away from the bed than the shallow water
     160  (limited using depth). In this case we won't need any contribution from
     161  $\bar{h_i}$ and set $alpha = 1$ reducing Equation \ref{eq:limiter bound} to
     162  \[
     163    \tilde{h_i} > \epsilon 
     164  \]
     165  \item $\bar{h_i} > \tilde{h_i}$: In this case the the deep water vertex is
     166  closer to the bed than the shallow water vertex or even below the bed.
     167  In this case we need to find an $alpha$ that will ensure a positive depth.   
     168  Rearranging Equation \ref{eq:limiter bound} and solving for $\alpha$ one
     169  obtains the bound
     170  \[
     171    \alpha < \frac{\epsilon - \bar{h_i}}{\tilde{h_i} - \bar{h_i}}, \forall i
     172  \]
     173\end{enumerate}
     174
     175Ensuring Equation \ref{eq:limiter bound} holds true for all vertices one
     176arrives at the definition
     177\[
     178  \alpha = \min_{i} \frac{\bar{h_i} - \epsilon}{\bar{h_i} - \tilde{h_i}}
     179\]
     180which will guarantee that no vertex 'cuts' through the bed. Finally, should
     181$\bar{h_i} < \epsilon$ and therefore $\alpha < 0$, we suggest setting $alpha=0$.
     182
     183%Furthermore,
     184%dropping the $\epsilon$ ensures that alpha is always positive and also 
     185%provides a numerical safety {??)
     186 
     187 
     188
     189
     190
    164191
    165192
Note: See TracChangeset for help on using the changeset viewer.