Changeset 4229
- Timestamp:
- Feb 6, 2007, 6:26:43 PM (18 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
anuga_core/documentation/user_manual/old_pyvolution_documentation/limiting.tex
r4215 r4229 136 136 is ignored we have immediately that 137 137 \[ 138 \alpha = 1 \mbox{ for} \hmin \ge \epsilonor dz=0139 \] 140 where the maximal bed elevation range $dz$ is defined as141 \[142 dz = \max_i |z_i - z|143 \]138 \alpha = 1 \mbox{ for } \hmin \ge \epsilon %or dz=0 139 \] 140 %where the maximal bed elevation range $dz$ is defined as 141 %\[ 142 % dz = \max_i |z_i - z| 143 %\] 144 144 145 145 If $\hmin < \epsilon$ we want to use the 'shallow' limiter just enough that … … 149 149 \] 150 150 or 151 \ [151 \begin{equation} 152 152 \alpha(\tilde{h_i} - \bar{h_i}) > \epsilon - \bar{h_i}, \forall i 153 \] 154 Rearranging and solving for $\alpha$ one obtains the bound 155 \[ 156 \alpha > \frac{\epsilon - \bar{h_i}}{\tilde{h_i} - \bar{h_i}}, \forall i 157 \] 158 159 Ensuring this holds true for all vertices on arrives at the definition 160 \begin{equation} 161 \alpha = \max_{i} \frac{\epsilon - \bar{h_i}}{\tilde{h_i} - \bar{h_i}} 153 \label{eq:limiter bound} 162 154 \end{equation} 163 which will guarantee that no vertex 'cuts' through the bed. 155 156 There are two cases: 157 \begin{enumerate} 158 \item $\bar{h_i} \le \tilde{h_i}$: The deep water (limited using stage) 159 vertex is at least as far away from the bed than the shallow water 160 (limited using depth). In this case we won't need any contribution from 161 $\bar{h_i}$ and set $alpha = 1$ reducing Equation \ref{eq:limiter bound} to 162 \[ 163 \tilde{h_i} > \epsilon 164 \] 165 \item $\bar{h_i} > \tilde{h_i}$: In this case the the deep water vertex is 166 closer to the bed than the shallow water vertex or even below the bed. 167 In this case we need to find an $alpha$ that will ensure a positive depth. 168 Rearranging Equation \ref{eq:limiter bound} and solving for $\alpha$ one 169 obtains the bound 170 \[ 171 \alpha < \frac{\epsilon - \bar{h_i}}{\tilde{h_i} - \bar{h_i}}, \forall i 172 \] 173 \end{enumerate} 174 175 Ensuring Equation \ref{eq:limiter bound} holds true for all vertices one 176 arrives at the definition 177 \[ 178 \alpha = \min_{i} \frac{\bar{h_i} - \epsilon}{\bar{h_i} - \tilde{h_i}} 179 \] 180 which will guarantee that no vertex 'cuts' through the bed. Finally, should 181 $\bar{h_i} < \epsilon$ and therefore $\alpha < 0$, we suggest setting $alpha=0$. 182 183 %Furthermore, 184 %dropping the $\epsilon$ ensures that alpha is always positive and also 185 %provides a numerical safety {??) 186 187 188 189 190 164 191 165 192
Note: See TracChangeset
for help on using the changeset viewer.