Changeset 6590
- Timestamp:
- Mar 23, 2009, 5:42:28 PM (16 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
anuga_work/publications/boxing_day_validation_2008/patong_validation.tex
r6576 r6590 37 37 38 38 The sources of data used to validate and verify a model can be separated into three main categories; analytical solutions, scale experiments and field measurements. Analytical solutions of the governing equations of a model, if available, provide the best means of validating a numerical hydrodynamic model. 39 (FIXME: CAN WE GET RID OF THIS: The solutions provide spatially and temporally distributed values of important observables that can be compared against modelled results). However analytical solutions to the governing equations are frequently limited to a small set of idealised examples that do not completely capture the more complex behaviour of 'real' events. Scale experiments, typically in the form of wave-tank experiments provide a much more realistic source of data that better captures the complex dynamics of natural tsunami, whilst allowing control of the event and much easier and accurate measurement of the tsunami properties. However comparison of numerical predictions with field data provides one of the most stringent test of model veracity. The use of field data increases the generality and significance of conclusions made regarding model utility. However the use of field data also significantly increase the uncertainty of the validation experiment that may constrain the ability to make unequiv acol statements~\cite{lane94}.39 (FIXME: CAN WE GET RID OF THIS: The solutions provide spatially and temporally distributed values of important observables that can be compared against modelled results). However analytical solutions to the governing equations are frequently limited to a small set of idealised examples that do not completely capture the more complex behaviour of 'real' events. Scale experiments, typically in the form of wave-tank experiments provide a much more realistic source of data that better captures the complex dynamics of natural tsunami, whilst allowing control of the event and much easier and accurate measurement of the tsunami properties. However comparison of numerical predictions with field data provides one of the most stringent test of model veracity. The use of field data increases the generality and significance of conclusions made regarding model utility. However the use of field data also significantly increase the uncertainty of the validation experiment that may constrain the ability to make unequivocal statements~\cite{lane94}. 40 40 41 41 Currently the extent of tsunami related field data is limited. The cost of tsunami monitoring programs and bathymetry and topography surveys prohibits the collection of data in many of the regions in which tsunamis pose greatest threat. The resulting lack of data has limited the number of field data sets available to validate tsunami models, particularly those modelling tsunami inundation. Synolakis et. al~\cite{synolakis07} have developed a set of standards, criteria and procedures for evaluating numerical models of tsunami. They propose three analytical solutions to help identify the validity of a model and five scale comparisons (wave-tank benchmarks) and two field events to assess model veracity. The two field data benchmarks are very useful but only capture a small subset of possible tsunami behaviours (FIXME: What?) and only one of the benchmarks can be used to validate tsunami inundation (FIXME: Why?). The type and size of a tsunami source, propagation extent, and local bathymetry and topography all affect the energy, waveform and subsequent inundation of a tsunami. Consequently additional field data benchmarks that further capture the variability and sensitivity of the real world system would be useful to allow model developers verify their models and subsequently use their models with greater confidence. … … 62 62 63 63 \subsection{Bathymetric and topographic data} 64 65 NOTE: Richard, could you please look into these issues and also those in your appendix? 64 66 65 67 FIXME(OLE): Need Intro to this section aka: we obtained data sets at different resolutions from various sources and merged them to build a model appropriate for inundation modelling. The resolution required was generally relatively coarse in the deeper water and progressively finer towards the bay itself with the finest data in the intertidal zone and around the built environment. … … 84 86 85 87 \subsection{Tsunami source}\label{sec:source} 88 89 NOTE: Richard, could you please look into these issues 90 91 86 92 The 2004 Indian Ocean tsunami was generated by severe coseismic displacement of the sea floor as a result of one of the largest earthquakes on record. The M$_w$=9.3 mega-thrust earthquake occurred on the 26 December 2004 at 0h58'53'' UTC approximately 70 km offshore North Sumatra. The disturbance propagated 1200-1300 km along the Sumatra-Andaman trench time at a rate of 2.5-3 km.s$^{-1}$ and lasted approximately 8-10 minutes (Amnon {\it et al.} 2005)\nocite{amnon05}. 87 93
Note: See TracChangeset
for help on using the changeset viewer.