Ignore:
Timestamp:
Apr 7, 2009, 9:27:08 AM (15 years ago)
Author:
ole
Message:

Cleaned up in references and moved to BiBTeX based citations.
Three citations missing at this stage.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • anuga_work/publications/boxing_day_validation_2008/patong_validation.tex

    r6735 r6736  
    9595
    9696\subsection{Validation data}
    97  Eyewitness accounts detailed in~\cite{papadopoulos06} report that most people at Patong Beach observed an initial retreat of the shoreline of more than 100m followed a few minutes later by a strong wave (crest). Another less powerful wave arrived another five or ten minutes later. Eyewitness statments place the arrival time of the strong wave between 2 hours and 55 inutes to 3 hours and 5 minutes after the source rupture (09:55am to 10:05am local time). After the event (HOw long?) a survey mapped the maximum observed inundation at Patong beach.  The inundation map is shown in Figure~\ref{fig:patongescapemap} and was kindly provided by the Thai Department of Mineral Resources \protect \cite{XXX}.
     97 Eyewitness accounts detailed in~\cite{papadopoulos06} report that most people at Patong Beach observed an initial retreat of the shoreline of more than 100m followed a few minutes later by a strong wave (crest). Another less powerful wave arrived another five or ten minutes later. Eyewitness statments place the arrival time of the strong wave between 2 hours and 55 minutes to 3 hours and 5 minutes after the source rupture (09:55am to 10:05am local time). After the event (HOw long?) a survey mapped the maximum observed inundation at Patong beach.  The inundation map is shown in Figure~\ref{fig:patongescapemap} and was kindly provided by the Thai Department of Mineral Resources \protect \cite{XXX}.
     98 
     99 
     100%In \cite{papadopoulos06} eyewitness accounts report
     101%\emph{In Patong beach, most people observed at least two
     102%waves. It is likely that the leading wave described in both
     103%Sri Lanka and Maldives was not observed in Patong beach.
     104%What people said is that the first sea motion was a retreat
     105%of more than 100 m. A few minutes later the strong wave
     106%arrived. Then, after another 5 or 10 min. one more wave attacked
     107%but less violently than the first one. Nearly all the
     108%interviewed persons reported that the tsunami inundation
     109%in the Patong beach varied from 150 m to at least 750 m
     110%(Fig. 16). One eyewitness reported inundation of only 20
     111%m. As for the arrival time of the strong wave the eyewitnesses
     112%do not agree. However, most reports concentrated
     113%around 02:55 to 03:05 (09:55 to 10:05 local) which seems
     114%to be a reliable description.}
     115%
     116%FIXME(Ole): Need discussion of model results in this context.
     117
     118 
    98119
    99120\begin{figure}[ht]
     
    181202\section*{Acknowledgements}
    182203This project was undertaken at Geoscience Australia and the Department of Mathematics, The Australian National University. The authors would like to thank Niran Chaimanee from the CCOP, Thailand for providing the post 2004 tsunami survey data and the elevation data for Patong beach.
    183 
    184 %====================Bibliography==================
    185 \bibliographystyle{plain}
    186 \bibliography{tsunami07}
    187204
    188205%===============Appendicies========================
     
    271288It can also be used in a nexted grid scheme and does on-shore inundation.
    272289
    273 %%%%%%%%%%%%%%%%%%%%%%%
     290
     291
     292%====================Bibliography==================
     293\bibliographystyle{plain}
     294\bibliography{tsunami07}
     295
    274296
    275297\end{document}
    276298
     299
     300
     301===================
     302NOTES TO BE REMOVED
    277303
    278304Main source of uncertainty arises from inaccuracies in initial condition (source), inaccurate bathymetry data, to a lesser extent friction
     
    351377different even types submarine mass failure generate larger events because of proximity more directional wave generation even if data is available it is hard to access
    352378
    353 \begin{thebibliography}{7}
    354 \bibitem{amnon05}
    355 Ammon, C.J., C. Ji, H. Thio, D. Robinson, Sidao Ni, V. Hjorleifsdottir, H., T. Lay, S. Das, D. Helmberger, G. Ichinose, J. Polet, and D. Wald (2005), Rupture process of the 2004 Sumatra-Andaman earthquake, {\em Science}, {\bf 308}, 1133.
    356 \bibitem{bourgeois99}
    357 Bourgeois, J., C. Petroff, H. Yeh, V. Titov, C. Synolakis, B. Benson, J. Kuroiwa, J. Lander, and E. Norabuena (1999), Geologic setting, field survey and modeling of the Chimbote, northern Peru, tsunami of 21 February 1996, {\em Pure and Applied Geophysics}, {\bf 154(3/4)}, pages 513-540.
    358 \bibitem{burbidge}
    359 Burbidge, D., P. Cummins, and R. Mleczko (2007), A Probabilistic Tsunami Hazard Assessment for Western Australia, Report to the Fire and Emergency Services Authority of Western Australia. FIXME: Needs to be updated to recent Pageoph reference.
    360 \bibitem{chlieh}
    361 Chlieh, M., J. P. Avouac, et al. (2007). Coseismic slip and afterslip of the great Mw 9.15 Sumatra-Andaman earthquake of 2004. Bulletin of the Seismological Society of America, {\bf 97(1A) }, S152-S173.
    362 \bibitem{greenslade07}
    363 Greenslade, D., M . Simanjuntak, D. Burbidge, and J. Chittleborough (2007), A first-generation real-time tsunami forecasting system for the Australian region. BMRC Research Report 126, Bureau of Meteorology Australia.
    364 \bibitem{grilli06}
    365 Grilli, S.T., M. Ioualalen, J. Asavanant, F. Shi, J.T Kirby, and P. Watts (2006), Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami, {\em Journal of Waterways, Port, Ocean and Coastal Engineering}. In press.
    366 \bibitem{gusiakov72}
    367 Gusiakov, V.K. (1972), Static displacement on the surface of an elastic space. Ill-posed problems of mathematical physics and interpretation of geophysical data, {\em Novosibirsk, VC SOAN SSSR},  23-51. In Russian.
    368 \bibitem{jankaew}
    369 Jankaew, K., B. F. Atwater, et al. (2008). Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand, Nature, {\bf 455(7217)}, 1228-1231.
    370 \bibitem{kawata05}
    371 Kawata, T. et XIV alia (2005) Comprehensive analysis of the damage and its impact on coastal zones by the 2004 Indian Ocean tsunami disaster. Technical report, Disaster Prevention Research Institute. http://www.tsunami.civil.tohoku.ac.jp/sumatra2004/\\report.html.
    372 \bibitem{kurganov01}
    373 Kurganov, A., S. Noelle, and G. Petrova (2001), Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, {\em SIAM Journal of Scientific Computing}, {\bf 23(3)}, 707-740.
    374 \bibitem{lebrun98}
    375 Lebrun, J.F., G.G. Karner, and J.Y. Collot. Fracture zone subduction and reactivation across the Puysegur ridge trench system, southern New Zealand, {\em Journal of Geophysical Research}, {\bf 103}, 7293-7313.
    376 \bibitem{liu05}
    377 Liu P. L.-F., P. Lynett, H. Fernando, B.E. Jaffe, H. Fritz, B. Higman, R. Morton, J. Goff, and C. Synolakis. Observations by the international tsunami survey team in Sri Lanka, {\em Science}, {\bf 308}, 1595.
    378 \bibitem{matsuyama01}
    379 Matsuyama, M. and H. Tanaka (2001) An experimental study of the highest run-up height in the 1993 Okkaido Nansei-Oki earthquake tsunami. In {\em National Tsunami Hazard Mitigation Program Review and International Tsunami Symposium (ITS)}, pages 879-889. U.S. National Tsunami Hazard Mitigation Program.
    380 \bibitem{merrifield05}
    381 Merrifield, M.A., et XXIII alia (2005), Tide gauge observations of the Indian Ocean tsunami, December 26, 2004, {\em Geophysical Research Letters}, {\bf 32}, L09603.
    382 \bibitem{ngdc}
    383 National Geophysical Data Center (NGDC). Indian ocean december 26, 2004: run-ups. http://www.ngdc.noaa.gov/seg/hazard/tsu.shtml
    384 \bibitem{nielsen05}
    385 Nielsen, O.M, S.G Roberts, D. Gray, A. McPherson, and A. Hitchman (2005), Hydrodynamic modelling of coastal inundation. In A. Zerger and R.M. Argent, editors, {\em MODSIM 2005 International Congress on Modelling and Simulation}, pages 518-523. Modelling and Simulation Society of Australia and New Zealand. http://www.mssanz.org.au/modsim05/papers/nielsen.pdf.
    386 \bibitem{roberts06}
    387 Roberts, S.G., O.M. Nielsen, and J.D. Jakeman (2006), Simulation of tsunami and flash flood. Accepted for publication in the refereed proceedings of the International Conference on High Performance Scientific Computing: Modeling, Simulation and Optimization of Complex Processes, March 6-10, 2006, Hanoi Vietnam.
    388 \bibitem{roberts00}
    389 Roberts, S.G. and C. Zoppou (2000), Robust and efficent solution of the 2d shallow water wave equation with domains containg dry beds, {\em The ANZIAM Journal}, {\bf 42(E)}, C1260-C1282.
    390 \bibitem{satake95}
    391 Satake, K. (1995). Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure and Applied Geophysics, {\bf 144(3)}, 455-470.
    392 \bibitem{schoettle2007}
    393 Schoettle E., and Sakimoto S. (2007), Modeling the Effects of Coral Reef Health on Tsunami Run-up
    394 with the Finite-element Model ADCIRC, \url{http://istim.ce.nd.edu/2007/Posters/Schoettle_poster.pdf}.
    395 \bibitem{synolakis05}
    396 Synolakis, C., E. Okal, and E. Bernard (2005), The megatsunami of December 26 2004, {\em The Bridge, National Academy of Engineering Publications}, {\bf 35(2)}, 36-35.
    397 \bibitem{titov05}
    398 Titov, V.V., F. Gonz\'{a}lez E. Bernard, M. Eble, H. Mofjeld, J. Newman, and A. Venturato (2005), Real-time tsunami forecasting: Challenges and solutions, {\em Natural Hazards}, {\bf 35}, 41-58.
    399 \bibitem{titov95}
    400 Titov, V.V. and C. Synolakis (1995), Modeling of breaking and nonbreaking long wave evolution and run-up using VTCS-2, {\em Journal of Waterways, Port, Ocean and Coastal Engineering}, {\bf 121(6)}, 308-316.
    401 \bibitem{titov97a}
    402 Titov, V.V. and F.I. Gonzalez (1997), Implementation and testing of the method of splitting tsunami (MOST) model, {\em NOAA Technical Memorandum}.
    403 \bibitem{titov01}
    404 Titov, V.V., F.I. Gonzalez, H.O. Mofjeld, and J.C. Newman (2001), Project SIFT (short-term inundation forecasting for tsunamis), In {\em ITS Proceedings}.
    405 \bibitem{gica08}
    406 Gica, E., M. Spillane, V.V. Titov, C.D. Chamberlin, and J.C. Newman (2008): Development of the forecast propagation database for NOAA's Short-term Inundation Forecast for Tsunamis (SIFT). NOAA Tech. Memo. {\bf OAR PMEL-139}, 89 pp.
    407 \bibitem{titov97b}
    408 Titov, V.V. and C.E. Synolakis (1997), Extreme inundation flows during the hokkaido Nansei-Oki tsunami, {\em Geophysical Research Letters}, {\bf 24(11)}, 1315-1318.
    409 \bibitem{tsuji95}
    410 Tsuji, T., S. Matsutomi, F. Imamura, and C.E. Synolakis (1995), Field survey of the east Java earthquake and tsunami, {\em Pure and Applied Geophysics}, {\bf 144(3/4)}, 839-855.
    411 \bibitem{vigny05}
    412 Vigny, C., W.J.F. Simons, S. Abu, R. Bamphenyu, N. C. Satirapod, C. Subarya Choosakul, A. Socquet, K. Omar, H.Z. Abidin, and B.A.C. Ambrosius (2005), Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in southeast Asia, {\em Nature}, {\bf 436}, 201-206.
    413 \bibitem{wang95}
    414 Wang, R., F. L. Martin, et al. (2003). Computation of deformation induced by earthquakes in a multi-layered elastic crust - FORTRAN program EDGRN/EDCMP. Computers and Geosciences, {\bf 29}, 195-207.
    415 \bibitem{yeh94}
    416 Yeh, H., V.V Titov, V. Gusiakov, E. Pelinovsky, V. Khramushin, and V. Kaistrenko (1994), The 1994 Shikotan earthquake tsunami, {\em  Pure and Applied Geophysics}, {\bf 144(3/4)}, 569-593.
    417 \bibitem{zoppou99}
    418 Zoppou, C., and S.G Roberts (1999), Catastrophic collapse of water supply reserviours in urban areas, {\em Journal of Hydraulic Engineering}, {\bf 125(7)}, 686-695.
    419 \bibitem{zoppou00}
    420 Zoppou, C. and S.G Roberts (2000), Numerical solution of the two-dimensional unsteady dam break, {\em Applied Mathematical Modelling}, {\bf 24}, 457-475.
    421 \end{thebibliography}
    422 
    423 In \cite{papadopoulos06} eyewitness accounts report
    424 \emph{In Patong beach, most people observed at least two
    425 waves. It is likely that the leading wave described in both
    426 Sri Lanka and Maldives was not observed in Patong beach.
    427 What people said is that the first sea motion was a retreat
    428 of more than 100 m. A few minutes later the strong wave
    429 arrived. Then, after another 5 or 10 min. one more wave attacked
    430 but less violently than the first one. Nearly all the
    431 interviewed persons reported that the tsunami inundation
    432 in the Patong beach varied from 150 m to at least 750 m
    433 (Fig. 16). One eyewitness reported inundation of only 20
    434 m. As for the arrival time of the strong wave the eyewitnesses
    435 do not agree. However, most reports concentrated
    436 around 02:55 to 03:05 (09:55 to 10:05 local) which seems
    437 to be a reliable description.}
    438 
    439 FIXME(Ole): Need discussion of model results in this context.
     379%% \begin{thebibliography}{7}
     380%% \bibitem{amnon05}
     381%% Ammon, C.J., C. Ji, H. Thio, D. Robinson, Sidao Ni, V. Hjorleifsdottir, H., T. Lay, S. Das, D. Helmberger, G. Ichinose, J. Polet, and D. Wald (2005), Rupture process of the 2004 Sumatra-Andaman earthquake, {\em Science}, {\bf 308}, 1133.
     382%% \bibitem{bourgeois99}
     383%% Bourgeois, J., C. Petroff, H. Yeh, V. Titov, C. Synolakis, B. Benson, J. Kuroiwa, J. Lander, and E. Norabuena (1999), Geologic setting, field survey and modeling of the Chimbote, northern Peru, tsunami of 21 February 1996, {\em Pure and Applied Geophysics}, {\bf 154(3/4)}, pages 513-540.
     384%% \bibitem{burbidge}
     385%% Burbidge, D., P. Cummins, and R. Mleczko (2007), A Probabilistic Tsunami Hazard Assessment for Western Australia, Report to the Fire and Emergency Services Authority of Western Australia. FIXME: Needs to be updated to recent Pageoph reference.
     386%% \bibitem{chlieh}
     387%% Chlieh, M., J. P. Avouac, et al. (2007). Coseismic slip and afterslip of the great Mw 9.15 Sumatra-Andaman earthquake of 2004. Bulletin of the Seismological Society of America, {\bf 97(1A) }, S152-S173.
     388%% \bibitem{greenslade07}
     389%% Greenslade, D., M . Simanjuntak, D. Burbidge, and J. Chittleborough (2007), A first-generation real-time tsunami forecasting system for the Australian region. BMRC Research Report 126, Bureau of Meteorology Australia.
     390%% \bibitem{grilli06}
     391%% Grilli, S.T., M. Ioualalen, J. Asavanant, F. Shi, J.T Kirby, and P. Watts (2006), Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami, {\em Journal of Waterways, Port, Ocean and Coastal Engineering}. In press.
     392%% \bibitem{gusiakov72}
     393%% Gusiakov, V.K. (1972), Static displacement on the surface of an elastic space. Ill-posed problems of mathematical physics and interpretation of geophysical data, {\em Novosibirsk, VC SOAN SSSR},  23-51. In Russian.
     394%% \bibitem{jankaew}
     395%% Jankaew, K., B. F. Atwater, et al. (2008). Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand, Nature, {\bf 455(7217)}, 1228-1231.
     396%% \bibitem{kawata05}
     397%% Kawata, T. et XIV alia (2005) Comprehensive analysis of the damage and its impact on coastal zones by the 2004 Indian Ocean tsunami disaster. Technical report, Disaster Prevention Research Institute. http://www.tsunami.civil.tohoku.ac.jp/sumatra2004/\\report.html.
     398%% \bibitem{kurganov01}
     399%% Kurganov, A., S. Noelle, and G. Petrova (2001), Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, {\em SIAM Journal of Scientific Computing}, {\bf 23(3)}, 707-740.
     400%% \bibitem{lebrun98}
     401%% Lebrun, J.F., G.G. Karner, and J.Y. Collot. Fracture zone subduction and reactivation across the Puysegur ridge trench system, southern New Zealand, {\em Journal of Geophysical Research}, {\bf 103}, 7293-7313.
     402%% \bibitem{liu05}
     403%% Liu P. L.-F., P. Lynett, H. Fernando, B.E. Jaffe, H. Fritz, B. Higman, R. Morton, J. Goff, and C. Synolakis. Observations by the international tsunami survey team in Sri Lanka, {\em Science}, {\bf 308}, 1595.
     404%% \bibitem{matsuyama01}
     405%% Matsuyama, M. and H. Tanaka (2001) An experimental study of the highest run-up height in the 1993 Okkaido Nansei-Oki earthquake tsunami. In {\em National Tsunami Hazard Mitigation Program Review and International Tsunami Symposium (ITS)}, pages 879-889. U.S. National Tsunami Hazard Mitigation Program.
     406%% \bibitem{merrifield05}
     407%% Merrifield, M.A., et XXIII alia (2005), Tide gauge observations of the Indian Ocean tsunami, December 26, 2004, {\em Geophysical Research Letters}, {\bf 32}, L09603.
     408%% \bibitem{ngdc}
     409%% National Geophysical Data Center (NGDC). Indian ocean december 26, 2004: run-ups. http://www.ngdc.noaa.gov/seg/hazard/tsu.shtml
     410%% \bibitem{nielsen05}
     411%% Nielsen, O.M, S.G Roberts, D. Gray, A. McPherson, and A. Hitchman (2005), Hydrodynamic modelling of coastal inundation. In A. Zerger and R.M. Argent, editors, {\em MODSIM 2005 International Congress on Modelling and Simulation}, pages 518-523. Modelling and Simulation Society of Australia and New Zealand. http://www.mssanz.org.au/modsim05/papers/nielsen.pdf.
     412%% \bibitem{roberts06}
     413%% Roberts, S.G., O.M. Nielsen, and J.D. Jakeman (2006), Simulation of tsunami and flash flood. Accepted for publication in the refereed proceedings of the International Conference on High Performance Scientific Computing: Modeling, Simulation and Optimization of Complex Processes, March 6-10, 2006, Hanoi Vietnam.
     414%% \bibitem{roberts00}
     415%% Roberts, S.G. and C. Zoppou (2000), Robust and efficent solution of the 2d shallow water wave equation with domains containg dry beds, {\em The ANZIAM Journal}, {\bf 42(E)}, C1260-C1282.
     416%% \bibitem{satake95}
     417%% Satake, K. (1995). Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure and Applied Geophysics, {\bf 144(3)}, 455-470.
     418%% \bibitem{schoettle2007}
     419%% Schoettle E., and Sakimoto S. (2007), Modeling the Effects of Coral Reef Health on Tsunami Run-up
     420%% with the Finite-element Model ADCIRC, \url{http://istim.ce.nd.edu/2007/Posters/Schoettle_poster.pdf}.
     421%% \bibitem{synolakis05}
     422%% Synolakis, C., E. Okal, and E. Bernard (2005), The megatsunami of December 26 2004, {\em The Bridge, National Academy of Engineering Publications}, {\bf 35(2)}, 36-35.
     423%% \bibitem{titov05}
     424%% Titov, V.V., F. Gonz\'{a}lez E. Bernard, M. Eble, H. Mofjeld, J. Newman, and A. Venturato (2005), Real-time tsunami forecasting: Challenges and solutions, {\em Natural Hazards}, {\bf 35}, 41-58.
     425%% \bibitem{titov95}
     426%% Titov, V.V. and C. Synolakis (1995), Modeling of breaking and nonbreaking long wave evolution and run-up using VTCS-2, {\em Journal of Waterways, Port, Ocean and Coastal Engineering}, {\bf 121(6)}, 308-316.
     427%% \bibitem{titov97a}
     428%% Titov, V.V. and F.I. Gonzalez (1997), Implementation and testing of the method of splitting tsunami (MOST) model, {\em NOAA Technical Memorandum}.
     429%% \bibitem{titov01}
     430%% Titov, V.V., F.I. Gonzalez, H.O. Mofjeld, and J.C. Newman (2001), Project SIFT (short-term inundation forecasting for tsunamis), In {\em ITS Proceedings}.
     431%% \bibitem{gica08}
     432%% Gica, E., M. Spillane, V.V. Titov, C.D. Chamberlin, and J.C. Newman (2008): Development of the forecast propagation database for NOAA's Short-term Inundation Forecast for Tsunamis (SIFT). NOAA Tech. Memo. {\bf OAR PMEL-139}, 89 pp.
     433%% \bibitem{titov97b}
     434%% Titov, V.V. and C.E. Synolakis (1997), Extreme inundation flows during the hokkaido Nansei-Oki tsunami, {\em Geophysical Research Letters}, {\bf 24(11)}, 1315-1318.
     435%% \bibitem{tsuji95}
     436%% Tsuji, T., S. Matsutomi, F. Imamura, and C.E. Synolakis (1995), Field survey of the east Java earthquake and tsunami, {\em Pure and Applied Geophysics}, {\bf 144(3/4)}, 839-855.
     437%% \bibitem{vigny05}
     438%% Vigny, C., W.J.F. Simons, S. Abu, R. Bamphenyu, N. C. Satirapod, C. Subarya Choosakul, A. Socquet, K. Omar, H.Z. Abidin, and B.A.C. Ambrosius (2005), Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in southeast Asia, {\em Nature}, {\bf 436}, 201-206.
     439%% \bibitem{wang95}
     440%% Wang, R., F. L. Martin, et al. (2003). Computation of deformation induced by earthquakes in a multi-layered elastic crust - FORTRAN program EDGRN/EDCMP. Computers and Geosciences, {\bf 29}, 195-207.
     441%% \bibitem{yeh94}
     442%% Yeh, H., V.V Titov, V. Gusiakov, E. Pelinovsky, V. Khramushin, and V. Kaistrenko (1994), The 1994 Shikotan earthquake tsunami, {\em  Pure and Applied Geophysics}, {\bf 144(3/4)}, 569-593.
     443%% \bibitem{zoppou99}
     444%% Zoppou, C., and S.G Roberts (1999), Catastrophic collapse of water supply reserviours in urban areas, {\em Journal of Hydraulic Engineering}, {\bf 125(7)}, 686-695.
     445%% \bibitem{zoppou00}
     446%% Zoppou, C. and S.G Roberts (2000), Numerical solution of the two-dimensional unsteady dam break, {\em Applied Mathematical Modelling}, {\bf 24}, 457-475.
     447%% \end{thebibliography}
     448
     449
     450
Note: See TracChangeset for help on using the changeset viewer.