Changeset 6995


Ignore:
Timestamp:
May 7, 2009, 1:56:41 PM (11 years ago)
Author:
ole
Message:

Added local time and link to USGS

File:
1 edited

Legend:

Unmodified
Added
Removed
  • anuga_work/publications/boxing_day_validation_2008/patong_validation.tex

    r6990 r6995  
    6060All tsunami are generated from an initial disturbance of the ocean which develops into a low frequency wave that propagates outwards from the source. The initial deformation of the water surface is most commonly caused by coseismic displacement of the sea floor, but submarine mass failures, landslides, volcanoes or asteroids can also cause tsunami. In this section we detail the information we used in this study to validate models of the sea floor deformation generated by the 2004 Sumatra--Andaman earthquake.
    6161
    62 The 2004 Sumatra--Andaman tsunami was generated by severe coseismic displacement of the sea floor as a result of one of the largest earthquakes on record. The mega-thrust earthquake started on the 26 December 2004 at 0h58'53'' UTC approximately 70 km offshore North Sumatra. The rupture propagated 1000-1300 km along the Sumatra-Andaman trench time to the north at a rate of 2.5-3 km.s$^{-1}$ and lasted approximately 8-10 minutes~\cite{ammon05}. Estimates of the moment magnitude of this event range from about 9.1 to 9.3~\cite{chlieh07, stein07}.
     62The 2004 Sumatra--Andaman tsunami was generated by severe coseismic displacement of the sea floor as a result of one of the largest earthquakes on record. The mega-thrust earthquake started on the 26 December 2004 at 0h58'53'' UTC (or just befor 8 am local time) approximately 70 km offshore North Sumatra (\url{http://earthquake.usgs.gov/eqcenter/eqinthenews/2004/usslav}). The rupture propagated 1000-1300 km along the Sumatra-Andaman trench time to the north at a rate of 2.5-3 km.s$^{-1}$ and lasted approximately 8-10 minutes~\cite{ammon05}. Estimates of the moment magnitude of this event range from about 9.1 to 9.3~\cite{chlieh07, stein07}.
    6363
    6464The unusually large surface deformation caused by this earthquakes means that there were a range of different geodetic measurements of the surface deformation available. These include field measurements of uplifted or subsided coral heads, continuous or campaign \textsc{GPS} measurments and remote sensing measurements of uplift or subsidence (see ~\cite{chlieh07} and references therein). Here we use the the near field estimates of vertical deformation in northwestern Sumatra and the Nicobar-Andaman islands collated by~\cite{chlieh07} to validate that our crustal deformation model of the 2004 Sumatra--Andaman earthquake is producing reasonable results. Note that the geodetic data used here is a combination of the vertical deformation that happened in the ~10 minutes of the earthquake plus the deformation that followed in the days following the earthquake before each particular measurement was actually made (typically of order days). Therefore some of the observations may not contain the purely co-seismic deformation but could include some post-seismic deformation as well~\cite{chlieh07}.
Note: See TracChangeset for help on using the changeset viewer.