Changeset 8725 for trunk/anuga_core/validation_tests
- Timestamp:
- Mar 5, 2013, 1:45:06 AM (12 years ago)
- Location:
- trunk/anuga_core/validation_tests/Tests/Analytical_exact/dam_break_wet
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/anuga_core/validation_tests/Tests/Analytical_exact/dam_break_wet/numerical_dam_break_wet.py
r8601 r8725 98 98 99 99 #------------------------------------------------------------------------------ 100 # Produce a documentation of parameters 101 #------------------------------------------------------------------------------ 102 parameter_file=open('parameters.tex', 'w') 103 parameter_file.write('\\begin{verbatim}\n') 104 from pprint import pprint 105 pprint(domain.get_algorithm_parameters(),parameter_file,indent=4) 106 parameter_file.write('\\end{verbatim}\n') 107 parameter_file.close() 108 109 110 #------------------------------------------------------------------------------ 100 111 # Evolve system through time 101 112 #------------------------------------------------------------------------------ -
trunk/anuga_core/validation_tests/Tests/Analytical_exact/dam_break_wet/report.tex
r8681 r8725 1 \documentclass[11pt,a4paper]{ report}1 \documentclass[11pt,a4paper]{article} 2 2 3 3 \usepackage{graphicx} … … 17 17 18 18 \title{Automated Report on the Performance of \anuga{} on Wet Dam Break} 19 %\maketitle19 \maketitle 20 20 %\tableofcontents 21 21 22 22 %====================== 23 \chapter{Wet Dam Break}23 %\chapter{Wet Dam Break} 24 24 %====================== 25 25 26 26 \input{results} 27 27 28 \section{Parameters used for this simulation} 29 30 \input{parameters} 31 32 %====================== 33 % bibliography 34 %====================== 35 \bibliographystyle{plain} 36 \bibliography{../../../bibliography} 28 37 29 38 \end{document} -
trunk/anuga_core/validation_tests/Tests/Analytical_exact/dam_break_wet/results.tex
r8601 r8725 1 1 2 \section{Dam Break}2 \section{Dam break on wet areas} 3 3 4 Standard dam break test problem on wet areas. Should show a rarefaction fan and a shock. 4 The dam break problem on wet areas was solved analytically by Stoker~\cite{Stoker1948, Stoker1957}. The analytical solution exhibits a rarefaction and involves a shock. Generally this problem is easier to solve numerically than the dry dam break (the dam break on a dry area). 5 6 The initial condition is 7 \begin{equation} \label{eq:dbp_init_wet} 8 u(x,0)=0, ~~v(x,y)=0, ~~\textrm{and}~~ 9 h(x,0) = \left\{ \begin{array}{ll} 10 h_1 & \textrm{if $x < 0$}\\ 11 h_0 & \textrm{if $x > 0$}\\ 12 \end{array} \right. 13 \end{equation} 14 where $h_1>h_0>0$. The topography is a horizontal flat bed. 15 16 The analytical solution~\cite{Stoker1948, Stoker1957} to the wet dam break problem is 17 \begin{equation} 18 h(x) = \left\{ \begin{array}{ll} 19 h_1 & \textrm{if $x \leq -t \sqrt{gh_1}$}\\ 20 h_3=\frac{4}{9g}(\sqrt{gh_1}-\frac{x}{2t})^2 & \textrm{if $-t \sqrt{gh_1} <x \leq t(u_2-\sqrt{gh_2}$})\\ 21 h_2=\frac{h_0}{2}\bigg(\sqrt{1+\frac{8\dot{\xi}^2}{gh_0}}-1\bigg) & \textrm{if $ t(u_2-\sqrt{gh_2}) <x < t\dot{\xi}$}\\ 22 h_0 & \textrm{if $x \geq t\dot{\xi}$}\\ 23 \end{array} \right. 24 \end{equation} 25 and 26 \begin{equation} 27 u(x) = \left\{ \begin{array}{ll} 28 0 & \textrm{if $x \leq -t \sqrt{gh_1}$}\\ 29 u_3=\frac{2}{3}(\sqrt{gh_1}+\frac{x}{t}) & \textrm{if $-t \sqrt{gh_1} <x \leq t(u_2-\sqrt{gh_2}$})\\ 30 u_2=\dot{\xi}-\frac{gh_0}{4\dot{\xi}}\bigg(1+\sqrt{1+\frac{8\dot{\xi}^2}{gh_0}} \bigg) & \textrm{if $ t(u_2-\sqrt{gh_2}) <x < t\dot{\xi}$}\\ 31 0 & \textrm{if $x \geq t\dot{\xi}$}\\ 32 \end{array} \right. 33 \end{equation} 34 at any time $t>0$, where $\dot{\xi}$ is the shock speed constant given by 35 \begin{equation} \label{eq:shock} 36 \dot{\xi}=2\sqrt{gh_1}+\frac{gh_0}{4\dot{\xi}}\bigg( 1+\sqrt{1+\frac{8\dot{\xi}^2}{gh_0}}\bigg)-\bigg( 2gh_0 \sqrt{1+\frac{8\dot{\xi}^2}{gh_0}}-2gh_0\bigg)^\frac{1}{2}. 37 \end{equation} 38 5 39 6 40 \subsection{Results} 7 41 8 9 We should see excellent agreement between the analytical and numerical solutions. 42 For our test, we consider $h_1=10$ and $h_0=1$ in (\ref{eq:dbp_init_wet}). 43 The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. 44 We should see excellent agreement between the analytical and numerical solutions. 10 45 11 46 \begin{figure}[h]
Note: See TracChangeset
for help on using the changeset viewer.