Ignore:
Timestamp:
Mar 5, 2013, 1:45:06 AM (12 years ago)
Author:
mungkasi
Message:

Updating codes and reports for dam break wet.

Location:
trunk/anuga_core/validation_tests/Tests/Analytical_exact/dam_break_wet
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • trunk/anuga_core/validation_tests/Tests/Analytical_exact/dam_break_wet/numerical_dam_break_wet.py

    r8601 r8725  
    9898
    9999#------------------------------------------------------------------------------
     100# Produce a documentation of parameters
     101#------------------------------------------------------------------------------
     102parameter_file=open('parameters.tex', 'w')
     103parameter_file.write('\\begin{verbatim}\n')
     104from pprint import pprint
     105pprint(domain.get_algorithm_parameters(),parameter_file,indent=4)
     106parameter_file.write('\\end{verbatim}\n')
     107parameter_file.close()
     108
     109
     110#------------------------------------------------------------------------------
    100111# Evolve system through time
    101112#------------------------------------------------------------------------------
  • trunk/anuga_core/validation_tests/Tests/Analytical_exact/dam_break_wet/report.tex

    r8681 r8725  
    1 \documentclass[11pt,a4paper]{report}
     1\documentclass[11pt,a4paper]{article}
    22
    33\usepackage{graphicx}
     
    1717
    1818\title{Automated Report on the Performance of \anuga{} on Wet Dam Break}
    19 %\maketitle
     19\maketitle
    2020%\tableofcontents
    2121
    2222%======================
    23 \chapter{Wet Dam Break}
     23%\chapter{Wet Dam Break}
    2424%======================
    2525
    2626\input{results}
    2727
     28\section{Parameters used for this simulation}
     29
     30\input{parameters}
     31
     32%======================
     33% bibliography
     34%======================
     35\bibliographystyle{plain}
     36\bibliography{../../../bibliography}
    2837
    2938\end{document}
  • trunk/anuga_core/validation_tests/Tests/Analytical_exact/dam_break_wet/results.tex

    r8601 r8725  
    11
    2 \section{Dam Break}
     2\section{Dam break on wet areas}
    33
    4 Standard dam break test problem on wet areas. Should show a rarefaction fan and a shock.
     4The dam break problem on wet areas was solved analytically by Stoker~\cite{Stoker1948, Stoker1957}. The analytical solution exhibits a rarefaction and involves a shock. Generally this problem is easier to solve numerically than the dry dam break (the dam break on a dry area).
     5
     6The initial condition is
     7\begin{equation} \label{eq:dbp_init_wet}
     8u(x,0)=0, ~~v(x,y)=0, ~~\textrm{and}~~
     9h(x,0) = \left\{ \begin{array}{ll}
     10h_1 & \textrm{if $x < 0$}\\
     11h_0 & \textrm{if $x > 0$}\\
     12\end{array} \right.
     13\end{equation}
     14where $h_1>h_0>0$. The topography is a horizontal flat bed.
     15
     16The analytical solution~\cite{Stoker1948, Stoker1957} to the wet dam break problem is
     17\begin{equation}
     18h(x) = \left\{ \begin{array}{ll}
     19h_1 & \textrm{if $x \leq -t \sqrt{gh_1}$}\\
     20h_3=\frac{4}{9g}(\sqrt{gh_1}-\frac{x}{2t})^2 & \textrm{if $-t \sqrt{gh_1} <x \leq t(u_2-\sqrt{gh_2}$})\\
     21h_2=\frac{h_0}{2}\bigg(\sqrt{1+\frac{8\dot{\xi}^2}{gh_0}}-1\bigg) & \textrm{if $ t(u_2-\sqrt{gh_2}) <x < t\dot{\xi}$}\\
     22h_0 & \textrm{if $x \geq t\dot{\xi}$}\\
     23\end{array} \right.
     24\end{equation}
     25and
     26\begin{equation}
     27u(x) = \left\{ \begin{array}{ll}
     280 & \textrm{if $x \leq -t \sqrt{gh_1}$}\\
     29u_3=\frac{2}{3}(\sqrt{gh_1}+\frac{x}{t}) & \textrm{if $-t \sqrt{gh_1} <x \leq t(u_2-\sqrt{gh_2}$})\\
     30u_2=\dot{\xi}-\frac{gh_0}{4\dot{\xi}}\bigg(1+\sqrt{1+\frac{8\dot{\xi}^2}{gh_0}} \bigg) & \textrm{if $ t(u_2-\sqrt{gh_2}) <x < t\dot{\xi}$}\\
     310 & \textrm{if $x \geq t\dot{\xi}$}\\
     32\end{array} \right.
     33\end{equation}
     34at any time $t>0$, where $\dot{\xi}$ is the shock speed constant given by
     35\begin{equation} \label{eq:shock}
     36\dot{\xi}=2\sqrt{gh_1}+\frac{gh_0}{4\dot{\xi}}\bigg( 1+\sqrt{1+\frac{8\dot{\xi}^2}{gh_0}}\bigg)-\bigg( 2gh_0 \sqrt{1+\frac{8\dot{\xi}^2}{gh_0}}-2gh_0\bigg)^\frac{1}{2}.
     37\end{equation}
     38
    539
    640\subsection{Results}
    741
    8 
    9 We should see excellent agreement between the analytical and numerical solutions.
     42For our test, we consider $h_1=10$ and $h_0=1$ in (\ref{eq:dbp_init_wet}).
     43The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time.
     44We should see excellent agreement between the analytical and numerical solutions.
    1045
    1146\begin{figure}[h]
Note: See TracChangeset for help on using the changeset viewer.