Changeset 8791


Ignore:
Timestamp:
Mar 29, 2013, 1:03:24 AM (12 years ago)
Author:
mungkasi
Message:

Small correction in mathematical equations.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/parabolic_basin/results.tex

    r8788 r8791  
    1414w(x,t) = D_0 + \frac{2 A D_0}{L^2} \cos(\omega t) \left( x - \frac{A}{2}\cos(\omega t) \right).
    1515\end{equation}
    16 Here $\omega=\sqrt{\frac{2 g D_0)}{L}}$.
     16Here $\omega=\frac{\sqrt{2 g D_0}}{L}$.
    1717The initial condition is set by taking $t=0$ in the analytical solution.
    1818
     
    2020\subsection{Results}
    2121For our test, we consider $D_0=4$, $L=10$, and $A=2$. After running the simulation for some time, we have Figures~\ref{fig:cross_section_stage}--\ref{fig:cross_section_xvel} showing the stage, $x$-momentum, and $x$-velocity respectively. There should be a good agreement between numerical and analytical solutions.
     22
     23As time goes on, some small deviations may appear. These are shown in Figures~\ref{fig:Stage_centre}--\ref{fig:Xvel_centre}, which illustrate the stage, $x$-momentum, and $x$-velocity at the centroid of the domain.
    2224
    2325\begin{figure}[!h]
     
    4648
    4749
    48 As time goes on, some small deviations may appear. These are shown in Figures~\ref{fig:Stage_centre}--\ref{fig:Xvel_centre}, which illustrate the stage, $x$-momentum, and $x$-velocity at the centroid of the domain.
     50
    4951
    5052\begin{figure}[!h]
Note: See TracChangeset for help on using the changeset viewer.