Changeset 8791
- Timestamp:
- Mar 29, 2013, 1:03:24 AM (12 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/parabolic_basin/results.tex
r8788 r8791 14 14 w(x,t) = D_0 + \frac{2 A D_0}{L^2} \cos(\omega t) \left( x - \frac{A}{2}\cos(\omega t) \right). 15 15 \end{equation} 16 Here $\omega=\ sqrt{\frac{2 g D_0)}{L}}$.16 Here $\omega=\frac{\sqrt{2 g D_0}}{L}$. 17 17 The initial condition is set by taking $t=0$ in the analytical solution. 18 18 … … 20 20 \subsection{Results} 21 21 For our test, we consider $D_0=4$, $L=10$, and $A=2$. After running the simulation for some time, we have Figures~\ref{fig:cross_section_stage}--\ref{fig:cross_section_xvel} showing the stage, $x$-momentum, and $x$-velocity respectively. There should be a good agreement between numerical and analytical solutions. 22 23 As time goes on, some small deviations may appear. These are shown in Figures~\ref{fig:Stage_centre}--\ref{fig:Xvel_centre}, which illustrate the stage, $x$-momentum, and $x$-velocity at the centroid of the domain. 22 24 23 25 \begin{figure}[!h] … … 46 48 47 49 48 As time goes on, some small deviations may appear. These are shown in Figures~\ref{fig:Stage_centre}--\ref{fig:Xvel_centre}, which illustrate the stage, $x$-momentum, and $x$-velocity at the centroid of the domain. 50 49 51 50 52 \begin{figure}[!h]
Note: See TracChangeset
for help on using the changeset viewer.