Changeset 8801
- Timestamp:
- Apr 2, 2013, 12:41:44 AM (12 years ago)
- Location:
- trunk/anuga_core/source/anuga_validation_tests/Analytical_exact
- Files:
-
- 3 added
- 1 deleted
- 20 edited
- 1 moved
Legend:
- Unmodified
- Added
- Removed
-
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/MacDonald_short_channel/results.tex
r8783 r8801 44 44 The following three figures show the stage, $x$-momentum, and $x$-velocity when water is steady. We should see excellent agreement between the analytical and numerical solutions. 45 45 46 \begin{figure} [h]46 \begin{figure} 47 47 \begin{center} 48 48 \includegraphics[width=0.9\textwidth]{stage_plot.png} … … 52 52 53 53 54 \begin{figure} [h]54 \begin{figure} 55 55 \begin{center} 56 56 \includegraphics[width=0.9\textwidth]{xmom_plot.png} … … 60 60 61 61 62 \begin{figure} [h]62 \begin{figure} 63 63 \begin{center} 64 64 \includegraphics[width=0.9\textwidth]{xvel_plot.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/avalanche_dry/results.tex
r8722 r8801 41 41 For our test, we consider $h_0=20$ in (\ref{eq:dap_init}). 42 42 The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. We should see excellent agreement between the analytical and numerical solutions. The wet/dry interface is difficult to resolve and it usually produces large errors, similar to the dry dam break problem. 43 \begin{figure} [h]43 \begin{figure} 44 44 \begin{center} 45 45 \includegraphics[width=0.9\textwidth]{stage_plot.png} … … 49 49 50 50 51 \begin{figure} [h]51 \begin{figure} 52 52 \begin{center} 53 53 \includegraphics[width=0.9\textwidth]{xmom_plot.png} … … 57 57 58 58 59 \begin{figure} [h]59 \begin{figure} 60 60 \begin{center} 61 61 \includegraphics[width=0.9\textwidth]{xvel_plot.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/avalanche_wet/results.tex
r8723 r8801 8 8 9 9 The initial condition is 10 \begin{equation} \label{eq:dap_init }10 \begin{equation} \label{eq:dap_init_wet} 11 11 u(x,0)=0, ~~v(x,y)=0, ~~\textrm{and}~~ 12 12 h(x,0) = \left\{ \begin{array}{ll} … … 56 56 \subsection{Results} 57 57 58 For our test, we consider $h_0=20$ and $h_1=10$ in (\ref{eq:dap_init }).58 For our test, we consider $h_0=20$ and $h_1=10$ in (\ref{eq:dap_init_wet}). 59 59 The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. We should see excellent agreement between the analytical and numerical solutions. 60 60 61 \begin{figure} [h]61 \begin{figure} 62 62 \begin{center} 63 63 \includegraphics[width=0.9\textwidth]{stage_plot.png} … … 67 67 68 68 69 \begin{figure} [h]69 \begin{figure} 70 70 \begin{center} 71 71 \includegraphics[width=0.9\textwidth]{xmom_plot.png} … … 75 75 76 76 77 \begin{figure} [h]77 \begin{figure} 78 78 \begin{center} 79 79 \includegraphics[width=0.9\textwidth]{xvel_plot.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/carrier_greenspan_periodic/results.tex
r8768 r8801 67 67 We should see excellent agreement between the analytical and numerical solutions. 68 68 69 \begin{figure} [h]69 \begin{figure} 70 70 \begin{center} 71 71 \includegraphics[width=0.9\textwidth]{stage_plot.png} … … 74 74 \end{figure} 75 75 76 \begin{figure} [h]76 \begin{figure} 77 77 \begin{center} 78 78 \includegraphics[width=0.9\textwidth]{xmom_plot.png} … … 81 81 \end{figure} 82 82 83 \begin{figure} [h]83 \begin{figure} 84 84 \begin{center} 85 85 \includegraphics[width=0.9\textwidth]{xvel_plot.png} … … 89 89 90 90 91 \begin{figure} [h]91 \begin{figure} 92 92 \begin{center} 93 93 \includegraphics[width=0.9\textwidth]{perturbation_at_origin.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/carrier_greenspan_transient/results.tex
r8773 r8801 29 29 We consider $\epsilon=0.2$. The following three figures show the stage, $x$-momentum, and $y$-momentum at several instants in time. We should see excellent agreement between the analytical and numerical solutions. 30 30 31 \begin{figure} [h]31 \begin{figure} 32 32 \begin{center} 33 33 \includegraphics[width=0.9\textwidth]{stage_plot.png} … … 36 36 \end{figure} 37 37 38 \begin{figure} [h]38 \begin{figure} 39 39 \begin{center} 40 40 \includegraphics[width=0.9\textwidth]{xmom_plot.png} … … 43 43 \end{figure} 44 44 45 \begin{figure} [h]45 \begin{figure} 46 46 \begin{center} 47 47 \includegraphics[width=0.9\textwidth]{xvel_plot.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/dam_break_dry/results.tex
r8724 r8801 39 39 The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. We should see excellent agreement between the analytical and numerical solutions. The wet/dry interface is difficult to resolve and it usually produces large errors. 40 40 41 \begin{figure} [h]41 \begin{figure} 42 42 \begin{center} 43 43 \includegraphics[width=0.8\textwidth]{stage_plot.png} … … 48 48 49 49 50 \begin{figure} [h]50 \begin{figure} 51 51 \begin{center} 52 52 \includegraphics[width=0.8\textwidth]{xmom_plot.png} … … 57 57 58 58 59 \begin{figure} [h]59 \begin{figure} 60 60 \begin{center} 61 61 \includegraphics[width=0.8\textwidth]{xvel_plot.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/dam_break_wet/results.tex
r8725 r8801 44 44 We should see excellent agreement between the analytical and numerical solutions. 45 45 46 \begin{figure} [h]46 \begin{figure} 47 47 \begin{center} 48 48 \includegraphics[width=0.9\textwidth]{stage_plot.png} … … 52 52 53 53 54 \begin{figure} [h]54 \begin{figure} 55 55 \begin{center} 56 56 \includegraphics[width=0.9\textwidth]{xmom_plot.png} … … 60 60 61 61 62 \begin{figure} [h]62 \begin{figure} 63 63 \begin{center} 64 64 \includegraphics[width=0.9\textwidth]{xvel_plot.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/deep_wave/results.tex
r8776 r8801 16 16 In this test, we consider $A=1$ and $\lambda=300$. 17 17 Figure~\ref{fig:stagewave} shows the time-evolution of the water elevation at three points in the domain. These time series should show the wave propagating without deformation or attenuation (i.e. the wave has the same shape, amplitude, period, mean water level etc. at each point). 18 \begin{figure} [h]18 \begin{figure} 19 19 \begin{center} 20 20 \includegraphics[width=0.9\textwidth]{wave_atten.png} … … 26 26 27 27 The corresponding momentums of Figure~\ref{fig:stagewave} are shown in Figures~\ref{fig:xmom} and~\ref{fig:ymom}. 28 \begin{figure} [h]28 \begin{figure} 29 29 \begin{center} 30 30 \includegraphics[width=0.9\textwidth]{xmom.png} … … 33 33 \end{center} 34 34 \end{figure} 35 \begin{figure} [h]35 \begin{figure} 36 36 \begin{center} 37 37 \includegraphics[width=0.9\textwidth]{ymom.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/lake_at_rest_immersed_bump/results.tex
r8777 r8801 17 17 Setting up the boundaries to be reflective, we should see excellent agreement between the analytical and numerical solutions if the method is well-balanced. Some oscillations may occur, but if the method is well-balanced, they should be very close to the order of the machine precision. The following three figures show the stage, $x$-momentum, and $x$-velocity after running \anuga{} for some time. 18 18 19 \begin{figure} [h]19 \begin{figure} 20 20 \begin{center} 21 21 \includegraphics[width=0.9\textwidth]{stage_plot.png} … … 25 25 26 26 27 \begin{figure} [h]27 \begin{figure} 28 28 \begin{center} 29 29 \includegraphics[width=0.9\textwidth]{xmom_plot.png} … … 33 33 34 34 35 \begin{figure} [h]35 \begin{figure} 36 36 \begin{center} 37 37 \includegraphics[width=0.9\textwidth]{xvel_plot.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/lake_at_rest_steep_island/results.tex
r8778 r8801 29 29 Current version of \anuga{} might not handle a discontinuous island perfectly. The following three figures show the stage, $x$-momentum, and $x$-velocity respectively, after we run the simulation for some time. We should see excellent agreement between the analytical and numerical solutions if the method is well-balanced and if the wet/dry interface has been correctly treated. 30 30 31 \begin{figure} [h]31 \begin{figure} 32 32 \begin{center} 33 33 \includegraphics[width=0.9\textwidth]{stage_plot.png} … … 37 37 38 38 39 \begin{figure} [h]39 \begin{figure} 40 40 \begin{center} 41 41 \includegraphics[width=0.9\textwidth]{xmom_plot.png} … … 45 45 46 46 47 \begin{figure} [h]47 \begin{figure} 48 48 \begin{center} 49 49 \includegraphics[width=0.9\textwidth]{xvel_plot.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/parabolic_basin/results.tex
r8791 r8801 23 23 As time goes on, some small deviations may appear. These are shown in Figures~\ref{fig:Stage_centre}--\ref{fig:Xvel_centre}, which illustrate the stage, $x$-momentum, and $x$-velocity at the centroid of the domain. 24 24 25 \begin{figure} [!h]25 \begin{figure} 26 26 \begin{center} 27 27 \includegraphics[width=0.9\textwidth]{cross_section_stage.png} … … 50 50 51 51 52 \begin{figure} [!h]52 \begin{figure} 53 53 \begin{center} 54 54 \includegraphics[width=0.9\textwidth]{Stage_centre.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/paraboloid_basin/results.tex
r8790 r8801 28 28 \begin{center} 29 29 \includegraphics[width=0.9\textwidth]{cross_section_stage.png} 30 \caption{Stage on a cross section of the basin at time $t= $ ?}30 \caption{Stage on a cross section of the basin at time $t=50$\,.} 31 31 \label{fig:cs_stage} 32 32 \end{center} … … 36 36 \begin{center} 37 37 \includegraphics[width=0.9\textwidth]{cross_section_xmom.png} 38 \caption{Xmomentum on a cross section of the basin at time $t= $ ?}38 \caption{Xmomentum on a cross section of the basin at time $t=50$\,.} 39 39 \label{fig:cs_xmom} 40 40 \end{center} … … 44 44 \begin{center} 45 45 \includegraphics[width=0.9\textwidth]{cross_section_xvel.png} 46 \caption{Xvelocity on a cross section of the basin at time $t= $ ?}46 \caption{Xvelocity on a cross section of the basin at time $t=50$\,.} 47 47 \label{fig:cs_xvel} 48 48 \end{center} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/rundown_mild_slope/results.tex
r8792 r8801 39 39 Figures~\ref{fig:xvelscrosschan} and~\ref{fig:yvelscroschan} show the steady state $x$- and $y$-velocities, along a slice in the cross slope direction (near $x=50$). The $x$-velocities should agree well with the analytical solution, and the $y$-velocities should be zero. 40 40 41 \begin{figure} [h]41 \begin{figure} 42 42 \begin{center} 43 43 \includegraphics[width=0.8\textwidth]{final_depth.png} … … 48 48 49 49 50 \begin{figure} [h]50 \begin{figure} 51 51 \begin{center} 52 52 \includegraphics[width=0.8\textwidth]{x_velocity.png} … … 56 56 \end{figure} 57 57 58 \begin{figure} [h]58 \begin{figure} 59 59 \begin{center} 60 60 \includegraphics[width=0.8\textwidth]{y_velocity.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/runup_on_beach/produce_results.py
r8795 r8801 10 10 def build(): 11 11 run_validation_script('numerical_runup.py') 12 run_validation_script('plot_r unup.py')12 run_validation_script('plot_results.py') 13 13 run('python', 'produce_report.py') 14 14 -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/runup_on_beach/results.tex
r8796 r8801 11 11 12 12 At an early runup, representatives of the results are as follows. Figure~\ref{fig:stage_1s} shows the water surface at time $t=1$ (in the cross-shore direction). It is not constant as the water runup at this time. Figure~\ref{fig:xvel_1s} shows the corresponding $x$-velocity during the wave runup. The velocities should be free from major spikes. 13 \begin{figure} [h]13 \begin{figure} 14 14 \begin{center} 15 15 \includegraphics[width=0.9\textwidth]{stage_1s.png} … … 19 19 \end{figure} 20 20 21 \begin{figure} [h]21 \begin{figure} 22 22 \begin{center} 23 23 \includegraphics[width=0.9\textwidth]{xvel_1s.png} … … 30 30 31 31 After a much longer time, representatives of the results are as follows. Figure~\ref{fig:stage_30s} shows the water surface at time 30s (in the cross-shore direction). It should be nearly constant (= -0.1m) in the wet portions of the domain. Figure~\ref{fig:xvel_30s} shows the corresponding velocity at time 30s. It should be nearly zero (e.g. $<<$ 1 mm/s). This case has been used to illustrate wet-dry artefacts in some versions of \anuga. 32 \begin{figure} [h]32 \begin{figure} 33 33 \begin{center} 34 34 \includegraphics[width=0.9\textwidth]{stage_30s.png} … … 38 38 \end{figure} 39 39 40 \begin{figure} [h]40 \begin{figure} 41 41 \begin{center} 42 42 \includegraphics[width=0.9\textwidth]{xvel_30s.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/runup_on_sinusoid_beach/results.tex
r8796 r8801 5 5 Figure~\ref{fig:vel_t1_centroid} shows the centroid velocities during the wave runup. The flow should be concentrating in the channels near the shore, and be free from major spikes. 6 6 7 \begin{figure} [h]7 \begin{figure} 8 8 \begin{center} 9 9 \includegraphics[width=0.9\textwidth]{vel_t1_centroid.png} … … 15 15 Figure~\ref{fig:vel_t2_centroid} shows the velocities profile at time 40~s. They should be nearly zero (e.g. O($10^{-3}$) m$/s$). This case has been used to illustrate wet-dry artefacts in some versions of \anuga. 16 16 17 \begin{figure} [h]17 \begin{figure} 18 18 \begin{center} 19 19 \includegraphics[width=0.9\textwidth]{vel_t2_centroid.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/transcritical_with_shock/results.tex
r8799 r8801 22 22 With these conditions, representatives of the simulation results are shown in the following three figures. They show the stage, $x$-momentum, and $x$-velocity respectively. We should see excellent agreement between the analytical and numerical solutions. 23 23 24 \begin{figure} [h]24 \begin{figure} 25 25 \begin{center} 26 26 \includegraphics[width=0.9\textwidth]{stage_plot.png} … … 30 30 31 31 32 \begin{figure} [h]32 \begin{figure} 33 33 \begin{center} 34 34 \includegraphics[width=0.9\textwidth]{xmom_plot.png} … … 38 38 39 39 40 \begin{figure} [h]40 \begin{figure} 41 41 \begin{center} 42 42 \includegraphics[width=0.9\textwidth]{xvel_plot.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/transcritical_without_shock/results.tex
r8800 r8801 27 27 Representatives of the simulation results are given in the following three figures. We should see excellent agreement between the analytical and numerical solutions. Small discrepancy may occurs for the $x$-momentum. It is not clear what makes this discrepancy. Numerical analysis may be conducted further to investigate why this discrepancy occurs. 28 28 29 \begin{figure} [h]29 \begin{figure} 30 30 \begin{center} 31 31 \includegraphics[width=0.9\textwidth]{stage_plot.png} … … 35 35 36 36 37 \begin{figure} [h]37 \begin{figure} 38 38 \begin{center} 39 39 \includegraphics[width=0.9\textwidth]{xmom_plot.png} … … 43 43 44 44 45 \begin{figure} [h]45 \begin{figure} 46 46 \begin{center} 47 47 \includegraphics[width=0.9\textwidth]{xvel_plot.png} -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/trapezoidal_channel/produce_results.py
r8739 r8801 8 8 # validation test 9 9 def build(): 10 run_validation_script(' channel_floodplain.py')10 run_validation_script('numerical_channel_floodplain.py') 11 11 run_validation_script('plot_results.py') 12 run('python', 'produce_report.py') 12 13 13 14 def clean(): -
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/trapezoidal_channel/results.tex
r8646 r8801 7 7 We do not expect perfect agreement, because the mesh is not very fine in this example (triangle side length of around 1m, just enough to resolve the banks). There will probably be some numerical diffusion in the cross-channel velocity profiles, which will in turn cause errors in the mid-channel velocity and free surface elevation. We deliberately choose to not use a finer mesh, because in realistic problems, it is often not possible to resolve all channels very well. 8 8 9 \begin{figure} [h]9 \begin{figure} 10 10 \begin{center} 11 11 \includegraphics[width=0.9\textwidth]{fig1mid_channel.png} … … 17 17 Figure~\ref{fig:xsect_vels} shows the cross-channel velocity profiles at a number of cross-sections. Ideally it should agree with the analytical solution, however, this may be difficult due to numerical diffusion in the cross-channel direction. Irrespective, the velocity profile should be qualitatively correct -- highest velocities should be in the channel centre, with lower velocities towards the banks. 18 18 19 \begin{figure} [h]19 \begin{figure} 20 20 \begin{center} 21 \includegraphics[width=0. 9\textwidth]{fig2upstream_channel.png}22 \includegraphics[width=0. 9\textwidth]{fig3central_channel.png}23 \includegraphics[width=0. 9\textwidth]{fig4downstream_channel.png}21 \includegraphics[width=0.75\textwidth]{fig2upstream_channel.png} 22 \includegraphics[width=0.75\textwidth]{fig3central_channel.png} 23 \includegraphics[width=0.75\textwidth]{fig4downstream_channel.png} 24 24 \caption{$y$-velocity distribution over a number of cross-sections.} 25 25 \label{fig:xsect_vels} … … 27 27 \end{figure} 28 28 29 Table~\ref{tab:trapztab} shows the discharge computed at a number of cross-sections in the channel, at a number of time-steps on the way to near steady-state. By the end of the simulation they should all be essentially the same. Large variations may suggest mass conservation errors (small variations are probably due to the interpolation that occurs in the 'compute\_flow\_through\_cross\_section' routine). 29 Table~\ref{tab:trapztab} shows the discharge computed at a number of cross-sections in the channel, at a number of time-steps on the way to near steady-state. By the end of the simulation they should all be essentially the same. Large variations may suggest mass conservation errors (small variations are probably due to the interpolation that occurs in the routine: 30 \begin{equation*} 31 \textrm{compute\_flow\_through\_cross\_section}. 32 \end{equation*} 30 33 31 \DTLloaddb{dischargeout}{Tests/Simple/trapezoidal_channel/discharge_outputs.txt} 34 35 \DTLloaddb{dischargeout}{Analytical_exact/trapezoidal_channel/discharge_outputs.txt} 36 %\DTLloaddb{dischargeout}{discharge_outputs.txt} 32 37 \begin{table} 33 38 \caption{Discharge through cross-sections at a number of $x$-position, at different instants in time}
Note: See TracChangeset
for help on using the changeset viewer.