Changeset 8801


Ignore:
Timestamp:
Apr 2, 2013, 12:41:44 AM (12 years ago)
Author:
mungkasi
Message:

Adding and modifying files for automated reports (Analytical_exact).

Location:
trunk/anuga_core/source/anuga_validation_tests/Analytical_exact
Files:
3 added
1 deleted
20 edited
1 moved

Legend:

Unmodified
Added
Removed
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/MacDonald_short_channel/results.tex

    r8783 r8801  
    4444The following three figures show the stage, $x$-momentum, and $x$-velocity when water is steady. We should see excellent agreement between the analytical and numerical solutions.
    4545
    46 \begin{figure}[h]
     46\begin{figure}
    4747\begin{center}
    4848\includegraphics[width=0.9\textwidth]{stage_plot.png}
     
    5252
    5353
    54 \begin{figure}[h]
     54\begin{figure}
    5555\begin{center}
    5656\includegraphics[width=0.9\textwidth]{xmom_plot.png}
     
    6060
    6161
    62 \begin{figure}[h]
     62\begin{figure}
    6363\begin{center}
    6464\includegraphics[width=0.9\textwidth]{xvel_plot.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/avalanche_dry/results.tex

    r8722 r8801  
    4141For our test, we consider $h_0=20$ in (\ref{eq:dap_init}).
    4242The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. We should see excellent agreement between the analytical and numerical solutions. The wet/dry interface is difficult to resolve and it usually produces large errors, similar to the dry dam break problem.
    43 \begin{figure}[h]
     43\begin{figure}
    4444\begin{center}
    4545\includegraphics[width=0.9\textwidth]{stage_plot.png}
     
    4949
    5050
    51 \begin{figure}[h]
     51\begin{figure}
    5252\begin{center}
    5353\includegraphics[width=0.9\textwidth]{xmom_plot.png}
     
    5757
    5858
    59 \begin{figure}[h]
     59\begin{figure}
    6060\begin{center}
    6161\includegraphics[width=0.9\textwidth]{xvel_plot.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/avalanche_wet/results.tex

    r8723 r8801  
    88
    99The initial condition is
    10 \begin{equation} \label{eq:dap_init}
     10\begin{equation} \label{eq:dap_init_wet}
    1111u(x,0)=0, ~~v(x,y)=0, ~~\textrm{and}~~
    1212h(x,0) = \left\{ \begin{array}{ll}
     
    5656\subsection{Results}
    5757
    58 For our test, we consider $h_0=20$ and $h_1=10$ in (\ref{eq:dap_init}).
     58For our test, we consider $h_0=20$ and $h_1=10$ in (\ref{eq:dap_init_wet}).
    5959The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. We should see excellent agreement between the analytical and numerical solutions.
    6060
    61 \begin{figure}[h]
     61\begin{figure}
    6262\begin{center}
    6363\includegraphics[width=0.9\textwidth]{stage_plot.png}
     
    6767
    6868
    69 \begin{figure}[h]
     69\begin{figure}
    7070\begin{center}
    7171\includegraphics[width=0.9\textwidth]{xmom_plot.png}
     
    7575
    7676
    77 \begin{figure}[h]
     77\begin{figure}
    7878\begin{center}
    7979\includegraphics[width=0.9\textwidth]{xvel_plot.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/carrier_greenspan_periodic/results.tex

    r8768 r8801  
    6767We should see excellent agreement between the analytical and numerical solutions.
    6868
    69 \begin{figure}[h]
     69\begin{figure}
    7070\begin{center}
    7171\includegraphics[width=0.9\textwidth]{stage_plot.png}
     
    7474\end{figure}
    7575
    76 \begin{figure}[h]
     76\begin{figure}
    7777\begin{center}
    7878\includegraphics[width=0.9\textwidth]{xmom_plot.png}
     
    8181\end{figure}
    8282
    83 \begin{figure}[h]
     83\begin{figure}
    8484\begin{center}
    8585\includegraphics[width=0.9\textwidth]{xvel_plot.png}
     
    8989
    9090
    91 \begin{figure}[h]
     91\begin{figure}
    9292\begin{center}
    9393\includegraphics[width=0.9\textwidth]{perturbation_at_origin.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/carrier_greenspan_transient/results.tex

    r8773 r8801  
    2929We consider $\epsilon=0.2$. The following three figures show the stage, $x$-momentum, and $y$-momentum at several instants in time. We should see excellent agreement between the analytical and numerical solutions.
    3030
    31 \begin{figure}[h]
     31\begin{figure}
    3232\begin{center}
    3333\includegraphics[width=0.9\textwidth]{stage_plot.png}
     
    3636\end{figure}
    3737
    38 \begin{figure}[h]
     38\begin{figure}
    3939\begin{center}
    4040\includegraphics[width=0.9\textwidth]{xmom_plot.png}
     
    4343\end{figure}
    4444
    45 \begin{figure}[h]
     45\begin{figure}
    4646\begin{center}
    4747\includegraphics[width=0.9\textwidth]{xvel_plot.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/dam_break_dry/results.tex

    r8724 r8801  
    3939The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. We should see excellent agreement between the analytical and numerical solutions. The wet/dry interface is difficult to resolve and it usually produces large errors.
    4040
    41 \begin{figure}[h]
     41\begin{figure}
    4242\begin{center}
    4343\includegraphics[width=0.8\textwidth]{stage_plot.png}
     
    4848
    4949
    50 \begin{figure}[h]
     50\begin{figure}
    5151\begin{center}
    5252\includegraphics[width=0.8\textwidth]{xmom_plot.png}
     
    5757
    5858
    59 \begin{figure}[h]
     59\begin{figure}
    6060\begin{center}
    6161\includegraphics[width=0.8\textwidth]{xvel_plot.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/dam_break_wet/results.tex

    r8725 r8801  
    4444We should see excellent agreement between the analytical and numerical solutions.
    4545
    46 \begin{figure}[h]
     46\begin{figure}
    4747\begin{center}
    4848\includegraphics[width=0.9\textwidth]{stage_plot.png}
     
    5252
    5353
    54 \begin{figure}[h]
     54\begin{figure}
    5555\begin{center}
    5656\includegraphics[width=0.9\textwidth]{xmom_plot.png}
     
    6060
    6161
    62 \begin{figure}[h]
     62\begin{figure}
    6363\begin{center}
    6464\includegraphics[width=0.9\textwidth]{xvel_plot.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/deep_wave/results.tex

    r8776 r8801  
    1616In this test, we consider $A=1$ and $\lambda=300$.
    1717Figure~\ref{fig:stagewave} shows the time-evolution of the water elevation at three points in the domain. These time series should show the wave propagating without deformation or attenuation (i.e. the wave has the same shape, amplitude, period, mean water level etc. at each point). 
    18 \begin{figure}[h]
     18\begin{figure}
    1919\begin{center}
    2020\includegraphics[width=0.9\textwidth]{wave_atten.png}
     
    2626
    2727The corresponding momentums of Figure~\ref{fig:stagewave} are shown in Figures~\ref{fig:xmom} and~\ref{fig:ymom}.
    28 \begin{figure}[h]
     28\begin{figure}
    2929\begin{center}
    3030\includegraphics[width=0.9\textwidth]{xmom.png}
     
    3333\end{center}
    3434\end{figure}
    35 \begin{figure}[h]
     35\begin{figure}
    3636\begin{center}
    3737\includegraphics[width=0.9\textwidth]{ymom.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/lake_at_rest_immersed_bump/results.tex

    r8777 r8801  
    1717Setting up the boundaries to be reflective, we should see excellent agreement between the analytical and numerical solutions if the method is well-balanced. Some oscillations may occur, but if the method is well-balanced, they should be very close to the order of the machine precision. The following three figures show the stage, $x$-momentum, and $x$-velocity after running \anuga{} for some time.
    1818
    19 \begin{figure}[h]
     19\begin{figure}
    2020\begin{center}
    2121\includegraphics[width=0.9\textwidth]{stage_plot.png}
     
    2525
    2626
    27 \begin{figure}[h]
     27\begin{figure}
    2828\begin{center}
    2929\includegraphics[width=0.9\textwidth]{xmom_plot.png}
     
    3333
    3434
    35 \begin{figure}[h]
     35\begin{figure}
    3636\begin{center}
    3737\includegraphics[width=0.9\textwidth]{xvel_plot.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/lake_at_rest_steep_island/results.tex

    r8778 r8801  
    2929Current version of \anuga{} might not handle a discontinuous island perfectly. The following three figures show the stage, $x$-momentum, and $x$-velocity respectively, after we run the simulation for some time. We should see excellent agreement between the analytical and numerical solutions if the method is well-balanced and if the wet/dry interface has been correctly treated.
    3030
    31 \begin{figure}[h]
     31\begin{figure}
    3232\begin{center}
    3333\includegraphics[width=0.9\textwidth]{stage_plot.png}
     
    3737
    3838
    39 \begin{figure}[h]
     39\begin{figure}
    4040\begin{center}
    4141\includegraphics[width=0.9\textwidth]{xmom_plot.png}
     
    4545
    4646
    47 \begin{figure}[h]
     47\begin{figure}
    4848\begin{center}
    4949\includegraphics[width=0.9\textwidth]{xvel_plot.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/parabolic_basin/results.tex

    r8791 r8801  
    2323As time goes on, some small deviations may appear. These are shown in Figures~\ref{fig:Stage_centre}--\ref{fig:Xvel_centre}, which illustrate the stage, $x$-momentum, and $x$-velocity at the centroid of the domain.
    2424
    25 \begin{figure}[!h]
     25\begin{figure}
    2626\begin{center}
    2727\includegraphics[width=0.9\textwidth]{cross_section_stage.png}
     
    5050
    5151
    52 \begin{figure}[!h]
     52\begin{figure}
    5353\begin{center}
    5454\includegraphics[width=0.9\textwidth]{Stage_centre.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/paraboloid_basin/results.tex

    r8790 r8801  
    2828\begin{center}
    2929\includegraphics[width=0.9\textwidth]{cross_section_stage.png}
    30 \caption{Stage on a cross section of the basin at time $t=$ ?}
     30\caption{Stage on a cross section of the basin at time $t=50$\,.}
    3131\label{fig:cs_stage}
    3232\end{center}
     
    3636\begin{center}
    3737\includegraphics[width=0.9\textwidth]{cross_section_xmom.png}
    38 \caption{Xmomentum on a cross section of the basin at time $t=$ ?}
     38\caption{Xmomentum on a cross section of the basin at time $t=50$\,.}
    3939\label{fig:cs_xmom}
    4040\end{center}
     
    4444\begin{center}
    4545\includegraphics[width=0.9\textwidth]{cross_section_xvel.png}
    46 \caption{Xvelocity on a cross section of the basin at time $t=$ ?}
     46\caption{Xvelocity on a cross section of the basin at time $t=50$\,.}
    4747\label{fig:cs_xvel}
    4848\end{center}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/rundown_mild_slope/results.tex

    r8792 r8801  
    3939Figures~\ref{fig:xvelscrosschan} and~\ref{fig:yvelscroschan} show the steady state $x$- and $y$-velocities, along a slice in the cross slope direction (near $x=50$). The $x$-velocities should agree well with the analytical solution, and the $y$-velocities should be zero.
    4040
    41 \begin{figure}[h]
     41\begin{figure}
    4242\begin{center}
    4343\includegraphics[width=0.8\textwidth]{final_depth.png}
     
    4848 
    4949
    50 \begin{figure}[h]
     50\begin{figure}
    5151\begin{center}
    5252\includegraphics[width=0.8\textwidth]{x_velocity.png}
     
    5656\end{figure}
    5757
    58 \begin{figure}[h]
     58\begin{figure}
    5959\begin{center}
    6060\includegraphics[width=0.8\textwidth]{y_velocity.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/runup_on_beach/produce_results.py

    r8795 r8801  
    1010def build():
    1111    run_validation_script('numerical_runup.py')
    12     run_validation_script('plot_runup.py')
     12    run_validation_script('plot_results.py')
    1313    run('python', 'produce_report.py')   
    1414
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/runup_on_beach/results.tex

    r8796 r8801  
    1111
    1212At an early runup, representatives of the results are as follows. Figure~\ref{fig:stage_1s} shows the water surface at time $t=1$ (in the cross-shore direction). It is not constant as the water runup at this time. Figure~\ref{fig:xvel_1s} shows the corresponding $x$-velocity during the wave runup. The velocities should be free from major spikes.
    13 \begin{figure}[h]
     13\begin{figure}
    1414\begin{center}
    1515\includegraphics[width=0.9\textwidth]{stage_1s.png}
     
    1919\end{figure}
    2020
    21 \begin{figure}[h]
     21\begin{figure}
    2222\begin{center}
    2323\includegraphics[width=0.9\textwidth]{xvel_1s.png}
     
    3030
    3131After a much longer time, representatives of the results are as follows. Figure~\ref{fig:stage_30s} shows the water surface at time 30s (in the cross-shore direction). It should be nearly constant (= -0.1m) in the wet portions of the domain. Figure~\ref{fig:xvel_30s} shows the corresponding velocity at time 30s. It should be nearly zero (e.g. $<<$ 1 mm/s). This case has been used to illustrate wet-dry artefacts in some versions of \anuga.
    32 \begin{figure}[h]
     32\begin{figure}
    3333\begin{center}
    3434\includegraphics[width=0.9\textwidth]{stage_30s.png}
     
    3838\end{figure}
    3939
    40 \begin{figure}[h]
     40\begin{figure}
    4141\begin{center}
    4242\includegraphics[width=0.9\textwidth]{xvel_30s.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/runup_on_sinusoid_beach/results.tex

    r8796 r8801  
    55Figure~\ref{fig:vel_t1_centroid} shows the centroid velocities during the wave runup. The flow should be concentrating in the channels near the shore, and be free from major spikes.
    66
    7 \begin{figure}[h]
     7\begin{figure}
    88\begin{center}
    99\includegraphics[width=0.9\textwidth]{vel_t1_centroid.png}
     
    1515Figure~\ref{fig:vel_t2_centroid} shows the velocities profile at time 40~s. They should be nearly zero (e.g. O($10^{-3}$) m$/s$). This case has been used to illustrate wet-dry artefacts in some versions of \anuga.
    1616
    17 \begin{figure}[h]
     17\begin{figure}
    1818\begin{center}
    1919\includegraphics[width=0.9\textwidth]{vel_t2_centroid.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/transcritical_with_shock/results.tex

    r8799 r8801  
    2222With these conditions, representatives of the simulation results are shown in the following three figures. They show the stage, $x$-momentum, and $x$-velocity respectively. We should see excellent agreement between the analytical and numerical solutions.
    2323
    24 \begin{figure}[h]
     24\begin{figure}
    2525\begin{center}
    2626\includegraphics[width=0.9\textwidth]{stage_plot.png}
     
    3030
    3131
    32 \begin{figure}[h]
     32\begin{figure}
    3333\begin{center}
    3434\includegraphics[width=0.9\textwidth]{xmom_plot.png}
     
    3838
    3939
    40 \begin{figure}[h]
     40\begin{figure}
    4141\begin{center}
    4242\includegraphics[width=0.9\textwidth]{xvel_plot.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/transcritical_without_shock/results.tex

    r8800 r8801  
    2727Representatives of the simulation results are given in the following three figures. We should see excellent agreement between the analytical and numerical solutions. Small discrepancy may occurs for the $x$-momentum. It is not clear what makes this discrepancy. Numerical analysis may be conducted further to investigate why this discrepancy occurs.
    2828
    29 \begin{figure}[h]
     29\begin{figure}
    3030\begin{center}
    3131\includegraphics[width=0.9\textwidth]{stage_plot.png}
     
    3535
    3636
    37 \begin{figure}[h]
     37\begin{figure}
    3838\begin{center}
    3939\includegraphics[width=0.9\textwidth]{xmom_plot.png}
     
    4343
    4444
    45 \begin{figure}[h]
     45\begin{figure}
    4646\begin{center}
    4747\includegraphics[width=0.9\textwidth]{xvel_plot.png}
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/trapezoidal_channel/produce_results.py

    r8739 r8801  
    88# validation test
    99def build():
    10     run_validation_script('channel_floodplain.py')
     10    run_validation_script('numerical_channel_floodplain.py')
    1111    run_validation_script('plot_results.py')
     12    run('python', 'produce_report.py') 
    1213
    1314def clean():
  • trunk/anuga_core/source/anuga_validation_tests/Analytical_exact/trapezoidal_channel/results.tex

    r8646 r8801  
    77We do not expect perfect agreement, because the mesh is not very fine in this example (triangle side length of around 1m, just enough to resolve the banks). There will probably be some numerical diffusion in the cross-channel velocity profiles, which will in turn cause errors in the mid-channel velocity and free surface elevation. We deliberately choose to not use a finer mesh, because in realistic problems, it is often not possible to resolve all channels very well.
    88
    9 \begin{figure}[h]
     9\begin{figure}
    1010\begin{center}
    1111\includegraphics[width=0.9\textwidth]{fig1mid_channel.png}
     
    1717Figure~\ref{fig:xsect_vels} shows the cross-channel velocity profiles at a number of cross-sections. Ideally it should agree with the analytical solution, however, this may be difficult due to numerical diffusion in the cross-channel direction. Irrespective, the velocity profile should be qualitatively correct -- highest velocities should be in the channel centre, with lower velocities towards the banks.
    1818
    19 \begin{figure}[h]
     19\begin{figure}
    2020\begin{center}
    21 \includegraphics[width=0.9\textwidth]{fig2upstream_channel.png}
    22 \includegraphics[width=0.9\textwidth]{fig3central_channel.png}
    23 \includegraphics[width=0.9\textwidth]{fig4downstream_channel.png}
     21\includegraphics[width=0.75\textwidth]{fig2upstream_channel.png}
     22\includegraphics[width=0.75\textwidth]{fig3central_channel.png}
     23\includegraphics[width=0.75\textwidth]{fig4downstream_channel.png}
    2424\caption{$y$-velocity distribution over a number of cross-sections.}
    2525\label{fig:xsect_vels}
     
    2727\end{figure}
    2828
    29 Table~\ref{tab:trapztab} shows the discharge computed at a number of cross-sections in the channel, at a number of time-steps on the way to near steady-state. By the end of the simulation they should all be essentially the same. Large variations may suggest mass conservation errors (small variations are probably due to the interpolation that occurs in the 'compute\_flow\_through\_cross\_section' routine).
     29Table~\ref{tab:trapztab} shows the discharge computed at a number of cross-sections in the channel, at a number of time-steps on the way to near steady-state. By the end of the simulation they should all be essentially the same. Large variations may suggest mass conservation errors (small variations are probably due to the interpolation that occurs in the routine:
     30\begin{equation*}
     31\textrm{compute\_flow\_through\_cross\_section}.
     32\end{equation*}
    3033
    31 \DTLloaddb{dischargeout}{Tests/Simple/trapezoidal_channel/discharge_outputs.txt}
     34
     35\DTLloaddb{dischargeout}{Analytical_exact/trapezoidal_channel/discharge_outputs.txt}
     36%\DTLloaddb{dischargeout}{discharge_outputs.txt}
    3237\begin{table}
    3338\caption{Discharge through cross-sections at a number of $x$-position, at different instants in time}
Note: See TracChangeset for help on using the changeset viewer.