
ANUGA User Manual
Release 1.2beta 6051

Geoscience Australia and the Australian National University

Friday 6th August, 2010, Twenty-Seven minutes to Three in the afternoon

Geoscience Australia
Email: nariman.habili@ga.gov.au

Copyright c©2004, 2005, 2006, 2010 Australian National University and Geoscience Australia. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted under
the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version, provided that this entire notice is included in all copies of any software
which is or includes a copy or modification of this software and in all copies of the supporting documentation for such
software.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License (http://www.gnu.org/copyleft/gpl.html) for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

This work was produced at Geoscience Australia and the Australian National University funded by the Commonwealth
of Australia. Neither the Australian Government, the Australian National University, Geoscience Australia nor any of
their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately-owned rights. Reference herein to any specific commercial products, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by the Australian Government, Geoscience Australia or the Australian National University.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the Australian Gov-
ernment, Geoscience Australia or the Australian National University, and shall not be used for advertising or product
endorsement purposes.

This document does not convey a warranty, express or implied, of merchantability or fitness for a particular purpose.

ANUGA

Manual typeset with LATEX

Credits:

• ANUGA was developed and is maintained by Stephen Roberts, Ole Nielsen, Duncan Gray and Jane Sexton.

License:

• ANUGA is freely available and distributed under the terms of the GNU General Public Licence.

Acknowledgments:

• John Jakeman, Rudy van Drie, Ted Rigby, Petar Milevski, Joaquim Luis, Nils Goseberg, William Power, Trevor
Dhu, Linda Stals, Matt Hardy, Jack Kelly and Christopher Zoppou who contributed to this project at various
times.

• A stand alone visualiser (anuga viewer) based on Open-scene-graph was developed by Darran Edmundson.

• The mesh generator engine was written by Jonathan Richard Shewchuk and made freely available under the
following license. See source code triangle.c for more details on the origins of this code. The license reads

/***/
/* */
/* 888888888 ,o, / 888 */
/* 888 88o88o " o8888o 88o8888o o88888o 888 o88888o */
/* 888 888 888 88b 888 888 888 888 888 d888 88b */
/* 888 888 888 o88ˆo888 888 888 "88888" 888 8888oo888 */
/* 888 888 888 C888 888 888 888 / 888 q888 */
/* 888 888 888 "88oˆ888 888 888 Cb 888 "88oooo" */
/* "8oo8D */
/* */
/* A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. */
/* (triangle.c) */
/* */
/* Version 1.6 */
/* July 28, 2005 */
/* */
/* Copyright 1993, 1995, 1997, 1998, 2002, 2005 */
/* Jonathan Richard Shewchuk */
/* 2360 Woolsey #H */
/* Berkeley, California 94705-1927 */
/* jrs@cs.berkeley.edu */
/* */
/* This program may be freely redistributed under the condition that the */
/* copyright notices (including this entire header and the copyright */
/* notice printed when the ‘-h’ switch is selected) are not removed, and */
/* no compensation is received. Private, research, and institutional */
/* use is free. You may distribute modified versions of this code UNDER */
/* THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE */
/* SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE */
/* AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR */
/* NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as */
/* part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT */
/* WITH THE AUTHOR. (If you are not directly supplying this code to a */
/* customer, and you are instead telling them how they can obtain it for */
/* free, then you are not required to make any arrangement with me.) */
/***/

• Pmw is a toolkit for building high-level compound widgets in Python using the Tkinter module. Parts of Pmw
have been incorpoated into the graphical mesh generator. The license for Pmw reads

"""
Pmw copyright

Copyright 1997-1999 Telstra Corporation Limited,
Australia Copyright 2000-2002 Really Good Software Pty Ltd, Australia

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""

Abstract

ANUGA is a hydrodynamic modelling tool that allows users to model realistic flow problems in complex 2D ge-
ometries. Examples include dam breaks or the effects of natural hazards such as riverine flooding, storm surges and
tsunami.

The user must specify a study area represented by a mesh of triangular cells, the topography and bathymetry, frictional
resistance, initial values for water level (called stage within ANUGA), boundary conditions and forces such as rainfall,
stream flows, windstress or pressure gradients if applicable.

ANUGA tracks the evolution of water depth and horizontal momentum within each cell over time by solving the
shallow water wave equation governing equation using a finite-volume method.

ANUGA also incorporates a mesh generator that allows the user to set up the geometry of the problem interactively
as well as tools for interpolation and surface fitting, and a number of auxiliary tools for visualising and interrogating
the model output.

Most ANUGA components are written in the object-oriented programming language Python and most users will
interact with ANUGA by writing small Python programs based on the ANUGA library functions. Computationally
intensive components are written for efficiency in C routines working directly with Python numpy structures.

CONTENTS

1 Introduction 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Audience . 1

2 Background 3

3 Restrictions and limitations on ANUGA 5

4 Getting Started 7
4.1 A Simple Example . 7

4.1.1 Overview . 7
4.1.2 Outline of the Program . 7
4.1.3 The Code . 8
4.1.4 Establishing the Mesh . 9
4.1.5 Initialising the Domain . 9
4.1.6 Initial Conditions . 10

4.1.6.1 Elevation . 10
4.1.6.2 Friction . 10
4.1.6.3 Stage . 10

4.1.7 Boundary Conditions . 11
4.1.8 Evolution . 13
4.1.9 Output . 13

4.2 How to Run the Code . 13
4.3 Exploring the Model Output . 13
4.4 A slightly more complex example . 15

4.4.1 Overview . 15
4.4.2 Overview . 15
4.4.3 The Code . 15
4.4.4 Establishing the Mesh . 16

4.5 Model Output . 16
4.5.1 Changing boundary conditions on the fly . 17
4.5.2 Output . 18
4.5.3 Flow through more complex topographies . 19

4.6 An Example with Real Data . 21
4.6.1 Overview . 21
4.6.2 The Code . 21
4.6.3 Establishing the Mesh . 24
4.6.4 Initialising the Domain . 28

i

4.6.5 Initial Conditions . 29
4.6.5.1 Stage . 29
4.6.5.2 Friction . 29
4.6.5.3 Elevation . 29

4.6.6 Boundary Conditions . 29
4.6.7 Evolution . 30

4.7 Exploring the Model Output . 31

5 ANUGA Public Interface 39
5.1 Documentation . 39
5.2 Public vs Private Interface . 39
5.3 Mesh Generation . 40

5.3.1 Advanced mesh generation . 44
5.3.1.1 Key Methods of Class Mesh . 44

5.4 Initialising the Domain . 46
5.4.1 Key Methods of Domain . 46

5.5 Initial Conditions . 49
5.6 Boundary Conditions . 52

5.6.1 Predefined boundary conditions . 52
5.6.2 User-defined boundary conditions . 54

5.7 Forcing Terms . 54
5.8 Evolution . 57

5.8.1 Diagnostics . 58
5.9 Queries of SWW model output files . 61
5.10 Other . 62

6 ANUGA System Architecture 63
6.1 File Formats . 63

6.1.1 Manually Created Files . 63
6.1.2 Automatically Created Files . 64
6.1.3 SWW, STS and TMS Formats . 64
6.1.4 Mesh File Formats . 66
6.1.5 Formats for Storing Arbitrary Points and Attributes . 67
6.1.6 ArcView Formats . 67
6.1.7 DEM Format . 67
6.1.8 Other Formats . 67
6.1.9 Basic File Conversions . 67

7 ANUGA mathematical background 69
7.1 Introduction . 69
7.2 Model . 69
7.3 Finite Volume Method . 69
7.4 Flux limiting . 71
7.5 Slope limiting . 72

8 Basic ANUGA Assumptions 75
8.1 Time . 75
8.2 Spatial data . 75

8.2.1 Projection . 75
8.2.2 Internal coordinates . 75
8.2.3 Polygons . 76

A Supporting Tools 77
A.1 caching . 77
A.2 anuga viewer . 78

ii

A.3 utilities/polygons . 79
A.4 coordinate transforms . 82
A.5 geospatial data . 83

A.5.1 Miscellaneous Functions . 85
A.6 Graphical Mesh Generator GUI . 87
A.7 class Alpha Shape . 88
A.8 Numerical Tools . 89
A.9 Finding the Optimal Alpha Value . 89

B ANUGA Full-scale Validations 91
B.1 Overview . 91
B.2 Patong Beach . 91

C Frequently Asked Questions 93

D Glossary 95

Index 97

iii

iv

CHAPTER

ONE

Introduction

1.1 Purpose

The purpose of this user manual is to introduce the new user to the inundation software system, describe what it can
do and give step-by-step instructions for setting up and running hydrodynamic simulations. The stable release of
ANUGA and this manual are available on sourceforge ati http://sourceforge.net/projects/anuga. A snapshot of work
in progress is available through the ANUGA software repository at https://datamining.anu.edu.au/svn/ga/anuga core
where the more adventurous reader might like to go.

This manual describes ANUGA version 1.2beta 6051. To check for later versions of this manual go to
https://datamining.anu.edu.au/anuga.

1.2 Scope

This manual covers only what is needed to operate the software after installation and configuration. It does not include
instructions for installing the software or detailed API documentation, both of which will be covered in separate
publications and by documentation in the source code.

The latest installation instructions may be found at: http://datamining.anu.edu.au/˜ole/anuga/user manual/anuga installation guide.pdf.

1.3 Audience

Readers are assumed to be familiar with the Python Programming language and its object ori-
ented approach. Python tutorials include http://docs.python.org/tut, http://www.sthurlow.com/python, and
http://datamining.anu.edu.au/˜ole/work/teaching/ctac2006/exercise1.pdf.

Readers also need to have a general understanding of scientific modelling, as well as enough programming experience
to adapt the code to different requirements.

1

2

CHAPTER

TWO

Background

Modelling the effects on the built environment of natural hazards such as riverine flooding, storm surges and tsunami
is critical for understanding their economic and social impact on our urban communities. Geoscience Australia and
the Australian National University are developing a hydrodynamic inundation modelling tool called ANUGA to help
simulate the impact of these hazards.

The core of ANUGA is the fluid dynamics module, called shallow_water, which is based on a finite-volume
method for solving the Shallow Water Wave Equation. The study area is represented by a mesh of triangular cells. By
solving the governing equation within each cell, water depth and horizontal momentum are tracked over time.

A major capability of ANUGA is that it can model the process of wetting and drying as water enters and leaves an
area. This means that it is suitable for simulating water flow onto a beach or dry land and around structures such as
buildings. ANUGA is also capable of modelling hydraulic jumps due to the ability of the finite-volume method to
accommodate discontinuities in the solution1.

To set up a particular scenario the user specifies the geometry (bathymetry and topography), the initial water level
(stage), boundary conditions such as tide, and any forcing terms that may drive the system such as rainfall, abstraction
of water, wind stress or atmospheric pressure gradients. Gravity and frictional resistance from the different terrains
in the model are represented by predefined forcing terms. See section 5.7 for details on forcing terms available in
ANUGA .

The built-in mesh generator, called graphical_mesh_generator, allows the user to set up the geometry of the
problem interactively and to identify boundary segments and regions using symbolic tags. These tags may then be
used to set the actual boundary conditions and attributes for different regions (e.g. the Manning friction coefficient)
for each simulation.

Most ANUGA components are written in the object-oriented programming language Python. Software written in
Python can be produced quickly and can be readily adapted to changing requirements throughout its lifetime. Com-
putationally intensive components are written for efficiency in C routines working directly with Python numeric struc-
tures. The animation tool developed for ANUGA is based on OpenSceneGraph, an Open Source Software (OSS)
component allowing high level interaction with sophisticated graphics primitives. See [nielsen2005] for more back-
ground on ANUGA .

1While ANUGA works with discontinuities in the conserved quantities stage, xmomentum and ymomentum, it does not allow discontinuities in
the bed elevation.

3

4

CHAPTER

THREE

Restrictions and limitations on ANUGA

Although a powerful and flexible tool for hydrodynamic modelling, ANUGA has a number of limitations that any
potential user needs to be aware of. They are:

• The mathematical model is the 2D shallow water wave equation. As such it cannot resolve vertical convection
and consequently not breaking waves or 3D turbulence (e.g. vorticity).

• All spatial coordinates are assumed to be UTM (meters). As such, ANUGA is unsuitable for modelling flows
in areas larger than one UTM zone (6 degrees wide).

• Fluid is assumed to be inviscid – i.e. no kinematic viscosity included.

• The finite volume is a very robust and flexible numerical technique, but it is not the fastest method around. If
the geometry is sufficiently simple and if there is no need for wetting or drying, a finite-difference method may
be able to solve the problem faster than ANUGA .

• Frictional resistance is implemented using Manning’s formula, but ANUGA has not yet been fully validated in
regard to bottom roughness.

5

6

CHAPTER

FOUR

Getting Started

This section is designed to assist the reader to get started with ANUGA by working through some examples. Two
examples are discussed; the first is a simple example to illustrate many of the concepts, and the second is a more
realistic example.

4.1 A Simple Example

4.1.1 Overview

What follows is a discussion of the structure and operation of a script called ‘runup.py’.

This example carries out the solution of the shallow-water wave equation in the simple case of a configuration compris-
ing a flat bed, sloping at a fixed angle in one direction and having a constant depth across each line in the perpendicular
direction.

The example demonstrates the basic ideas involved in setting up a complex scenario. In general the user specifies the
geometry (bathymetry and topography), the initial water level, boundary conditions such as tide, and any forcing terms
that may drive the system such as rainfall, abstraction of water, wind stress or atmospheric pressure gradients. Fric-
tional resistance from the different terrains in the model is represented by predefined forcing terms. In this example,
the boundary is reflective on three sides and a time dependent wave on one side.

The present example represents a simple scenario and does not include any forcing terms, nor is the data taken from a
file as it would typically be.

The conserved quantities involved in the problem are stage (absolute height of water surface), x-momentum and y-
momentum. Other quantities involved in the computation are the friction and elevation.

Water depth can be obtained through the equation:

depth = stage - elevation

4.1.2 Outline of the Program

In outline, ‘runup.py’ performs the following steps:

1. Sets up a triangular mesh.

2. Sets certain parameters governing the mode of operation of the model, specifying, for instance, where to store
the model output.

7

3. Inputs various quantities describing physical measurements, such as the elevation, to be specified at each mesh
point (vertex).

4. Sets up the boundary conditions.

5. Carries out the evolution of the model through a series of time steps and outputs the results, providing a results
file that can be viewed.

4.1.3 The Code

For reference we include below the complete code listing for ‘runup.py’. Subsequent paragraphs provide a ’commen-
tary’ that describes each step of the program and explains it significance.

"""Simple water flow example using ANUGA

Water driven up a linear slope and time varying boundary,
similar to a beach environment
"""

#--
Import necessary modules
#--
import anuga

from math import sin, pi, exp

#--
Setup computational domain
#--
points, vertices, boundary = anuga.rectangular_cross(10, 10) # Basic mesh

domain = anuga.Domain(points, vertices, boundary) # Create domain
domain.set_name(’runup’) # Output to file runup.sww
domain.set_datadir(’.’) # Use current folder

#--
Setup initial conditions
#--
def topography(x, y):

return -x/2 # linear bed slope
#return x*(-(2.0-x)*.5) # curved bed slope

domain.set_quantity(’elevation’, topography) # Use function for elevation
domain.set_quantity(’friction’, 0.1) # Constant friction
domain.set_quantity(’stage’, -0.4) # Constant negative initial stage

#--
Setup boundary conditions
#--
Br = anuga.Reflective_boundary(domain) # Solid reflective wall
Bt = anuga.Transmissive_boundary(domain) # Continue all values on boundary
Bd = anuga.Dirichlet_boundary([-0.2,0.,0.]) # Constant boundary values
Bw = anuga.Time_boundary(domain=domain, # Time dependent boundary

f=lambda t: [(0.1*sin(t*2*pi)-0.3)*exp(-t), 0.0, 0.0])

Associate boundary tags with boundary objects
domain.set_boundary({’left’: Br, ’right’: Bw, ’top’: Br, ’bottom’: Br})

8 Chapter 4. Getting Started

#--
Evolve system through time
#--
for t in domain.evolve(yieldstep=0.1, finaltime=10.0):

print domain.timestepping_statistics()

4.1.4 Establishing the Mesh

The first task is to set up the triangular mesh to be used for the scenario. This is carried out through the statement:

points, vertices, boundary = anuga.rectangular_cross(10, 10)

The function rectangular_cross is imported from a module mesh_factory defined elsewhere. (ANUGA
also contains several other schemes that can be used for setting up meshes, but we shall not discuss these.) The above
assignment sets up a 10× 10 rectangular mesh, triangulated in a regular way. The assignment:

points, vertices, boundary = anuga.rectangular_cross(m, n)

returns:

• a list points giving the coordinates of each mesh point,

• a list vertices specifying the three vertices of each triangle, and

• a dictionary boundary that stores the edges on the boundary and associates each with one of the symbolic
tags ’left’, ’right’, ’top’ or ’bottom’. The edges are represented as pairs (i, j) where i refers to the
triangle id and j to the edge id of that triangle. Edge ids are enumerated from 0 to 2 based on the id of the vertex
opposite.

(For more details on symbolic tags, see page 11.)

An example of a general unstructured mesh and the associated data structures points, vertices and boundary
is given in Section 5.3.

4.1.5 Initialising the Domain

These variables are then used to set up a data structure domain, through the assignment:

domain = anuga.Domain(points, vertices, boundary)

This creates an instance of the Domain class, which represents the domain of the simulation. Specific options are set
at this point, including the basename for the output file and the directory to be used for data:

domain.set_name(’runup’)
domain.set_datadir(’.’)

In addition, the following statement could be used to state that quantities stage, xmomentum and ymomentum are
to be stored at every timestep and elevation only once at the beginning of the simulation:

4.1. A Simple Example 9

domain.set_quantities_to_be_stored({’stage’: 2, ’xmomentum’: 2, ’ymomentum’: 2, ’elevation’: 1})

However, this is not necessary, as the above is the default behaviour.

4.1.6 Initial Conditions

The next task is to specify a number of quantities that we wish to set for each mesh point. The class Domain
has a method set_quantity, used to specify these quantities. It is a flexible method that allows the user to set
quantities in a variety of ways – using constants, functions, numeric arrays, expressions involving other quantities, or
arbitrary data points with associated values, all of which can be passed as arguments. All quantities can be initialised
using set_quantity. For a conserved quantity (such as stage, xmomentum, ymomentum) this is called an
initial condition. However, other quantities that aren’t updated by the equation are also assigned values using the same
interface. The code in the present example demonstrates a number of forms in which we can invoke set_quantity.

4.1.6.1 Elevation

The elevation, or height of the bed, is set using a function defined through the statements below, which is specific to
this example and specifies a particularly simple initial configuration for demonstration purposes:

def topography(x, y):
return -x/2

This simply associates an elevation with each point (x, y) of the plane. It specifies that the bed slopes linearly in
the x direction, with slope −1

2 , and is constant in the y direction.

Once the function topography is specified, the quantity elevation is assigned through the simple statement:

domain.set_quantity(’elevation’, topography)

NOTE: If using function to set elevation it must be vector compatible. For example, using square root will not
work.

4.1.6.2 Friction

The assignment of the friction quantity (a forcing term) demonstrates another way we can use set_quantity to set
quantities – namely, assign them to a constant numerical value:

domain.set_quantity(’friction’, 0.1)

This specifies that the Manning friction coefficient is set to 0.1 at every mesh point.

4.1.6.3 Stage

The stage (the height of the water surface) is related to the elevation and the depth at any time by the equation:

10 Chapter 4. Getting Started

stage = elevation + depth

For this example, we simply assign a constant value to stage, using the statement:

domain.set_quantity(’stage’, -0.4)

which specifies that the surface level is set to a height of −0.4, i.e. 0.4 units (metres) below the zero level.

Although it is not necessary for this example, it may be useful to digress here and mention a variant to this requirement,
which allows us to illustrate another way to use set_quantity – namely, incorporating an expression involving
other quantities. Suppose, instead of setting a constant value for the stage, we wished to specify a constant value for
the depth. For such a case we need to specify that stage is everywhere obtained by adding that value to the value
already specified for elevation. We would do this by means of the statements:

h = 0.05 # Constant depth
domain.set_quantity(’stage’, expression=’elevation + %f’ % h)

That is, the value of stage is set to h = 0.05 plus the value of elevation already defined.

The reader will probably appreciate that this capability to incorporate expressions into statements using set_-
quantity greatly expands its power. See Section 5.5 for more details.

4.1.7 Boundary Conditions

The boundary conditions are specified as follows:

Br = anuga.Reflective_boundary(domain)
Bt = anuga.Transmissive_boundary(domain)
Bd = anuga.Dirichlet_boundary([0.2, 0.0, 0.0])
Bw = anuga.Time_boundary(domain=domain,

f=lambda t: [(0.1*sin(t*2*pi)-0.3)*exp(-t), 0.0, 0.0])

The effect of these statements is to set up a selection of different alternative boundary conditions and store them in
variables that can be assigned as needed. Each boundary condition specifies the behaviour at a boundary in terms of the
behaviour in neighbouring elements. The boundary conditions introduced here may be briefly described as follows:

• Reflective boundary Returns same stage as in its neighbour volume but momentum vector reversed 180
degrees (reflected). Specific to the shallow water equation as it works with the momentum quantities assumed
to be the second and third conserved quantities. A reflective boundary condition models a solid wall.

• Transmissive boundary Returns same conserved quantities as those present in its neighbour volume. This is
one way of modelling outflow from a domain, but it should be used with caution if flow is not steady state as
replication of momentum at the boundary may cause numerical instabilities propagating into the domain and
eventually causing ANUGA to crash. If this occurs, consider using e.g. a Dirichlet boundary condition with a
stage value less than the elevation at the boundary.

• Dirichlet boundary Specifies constant values for stage, x-momentum and y-momentum at the boundary.

• Time boundary Like a Dirichlet boundary but with behaviour varying with time.

Before describing how these boundary conditions are assigned, we recall that a mesh is specified using three variables
points, vertices and boundary. In the code we are discussing, these three variables are returned by the

4.1. A Simple Example 11

function rectangular. The example given in Section 4.6 illustrates another way of assigning the values, by means
of the function create_mesh_from_regions.

These variables store the data determining the mesh as follows. (You may find that the example given in Section 5.3
helps to clarify the following discussion, even though that example is a non-rectangular mesh.)

• The variable points stores a list of 2-tuples giving the coordinates of the mesh points.

• The variable vertices stores a list of 3-tuples of numbers, representing vertices of triangles in the mesh. In
this list, the triangle whose vertices are points[i], points[j], points[k] is represented by the 3-tuple
(i, j, k).

• The variable boundary is a Python dictionary that not only stores the edges that make up the boundary but
also assigns symbolic tags to these edges to distinguish different parts of the boundary. An edge with endpoints
points[i] and points[j] is represented by the 2-tuple (i, j). The keys for the dictionary are the
2-tuples (i, j) corresponding to boundary edges in the mesh, and the values are the tags are used to label
them. In the present example, the value boundary[(i, j)] assigned to (i, j)] is one of the four tags
’left’, ’right’, ’top’ or ’bottom’, depending on whether the boundary edge represented by (i,
j) occurs at the left, right, top or bottom of the rectangle bounding the mesh. The function rectangular
automatically assigns these tags to the boundary edges when it generates the mesh.

The tags provide the means to assign different boundary conditions to an edge depending on which part of the boundary
it belongs to. (In Section 4.6 we describe an example that uses different boundary tags – in general, the possible tags
are entirely selectable by the user when generating the mesh and not limited to ’left’, ’right’, ’top’ and ’bottom’ as
in this example.) All segments in bounding polygon must be tagged. If a tag is not supplied, the default tag name
’exterior’ will be assigned by ANUGA .

Using the boundary objects described above, we assign a boundary condition to each part of the boundary by means
of a statement like:

domain.set_boundary({’left’: Br, ’right’: Bw, ’top’: Br, ’bottom’: Br})

It is critical that all tags are associated with a boundary condition in this statement. If not the program will halt with a
statement like:

Traceback (most recent call last):
File "mesh_test.py", line 114, in ?

domain.set_boundary({’west’: Bi, ’east’: Bo, ’north’: Br, ’south’: Br})
File "X:\inundation\sandpits\onielsen\anuga_core\source\anuga\abstract_2d_finite_volumes\domain.py", line 505, in set_boundary

raise msg
ERROR (domain.py): Tag "exterior" has not been bound to a boundary object.
All boundary tags defined in domain must appear in the supplied dictionary.
The tags are: [’ocean’, ’east’, ’north’, ’exterior’, ’south’]

The command set_boundary stipulates that, in the current example, the right boundary varies with time, as defined
by the lambda function, while the other boundaries are all reflective.

The reader may wish to experiment by varying the choice of boundary types for one or more of the boundaries.
(In the case of Bd and Bw, the three arguments in each case represent the stage, x-momentum and y-momentum,
respectively.)

Bw = anuga.Time_boundary(domain=domain, f=lambda t: [(0.1*sin(t*2*pi)-0.3), 0.0, 0.0])

12 Chapter 4. Getting Started

4.1.8 Evolution

The final statement:

for t in domain.evolve(yieldstep=0.1, duration=10.0):
print domain.timestepping_statistics()

causes the configuration of the domain to ’evolve’, over a series of steps indicated by the values of yieldstep and
duration, which can be altered as required. The value of yieldstep controls the time interval between successive
model outputs. Behind the scenes more time steps are generally taken.

4.1.9 Output

The output is a NetCDF file with the extension .sww. It contains stage and momentum information and can be used
with the ANUGA viewer anuga_viewer to generate a visual display (see Section A.2). See Section 6.1 (page 63)
for more on NetCDF and other file formats.

The following is a listing of the screen output seen by the user when this example is run:

$ python runup.py
Time = 0.0000, steps=0 (0)
Time = 0.1000, delta t in [0.01373568, 0.01683588], steps=7 (7)
Time = 0.2000, delta t in [0.01203520, 0.01357912], steps=8 (8)
Time = 0.3000, delta t in [0.01144234, 0.01193508], steps=9 (9)
Time = 0.4000, delta t in [0.01141301, 0.01152065], steps=9 (9)
...

4.2 How to Run the Code

The code can be run in various ways:

• from a Windows or Unix command line as in python runup.py

• within the Python IDLE environment

• within emacs

• within Windows, by double-clicking the runup.py file.

4.3 Exploring the Model Output

The following figures are screenshots from the ANUGA visualisation tool anuga_viewer. Figure 4.1 shows the
domain with water surface as specified by the initial condition, t = 0. Figure 4.2 shows later snapshots for t = 2.3
and t = 4 where the system has been evolved and the wave is encroaching on the previously dry bed.

anuga_viewer is described in more detail in Section A.2.

4.2. How to Run the Code 13

Figure 4.1: Runup example viewed with the ANUGA viewer

Figure 4.2: Runup example viewed with ANGUA viewer

14 Chapter 4. Getting Started

4.4 A slightly more complex example

4.4.1 Overview

The next example is about water-flow in a channel with varying boundary conditions and more complex topographies.
These examples build on the concepts introduced through the ‘runup.py’ in Section 4.1. The example will be built up
through three progressively more complex scripts.

4.4.2 Overview

As in the case of ‘runup.py’, the actions carried out by the program can be organised according to this outline:

1. Set up a triangular mesh.

2. Set certain parameters governing the mode of operation of the model – specifying, for instance, where to store
the model output.

3. Set up initial conditions for various quantities such as the elevation, to be specified at each mesh point (vertex).

4. Set up the boundary conditions.

5. Carry out the evolution of the model through a series of time steps and output the results, providing a results file
that can be viewed.

4.4.3 The Code

Here is the code for the first version of the channel flow ‘channel1.py’:

"""Simple water flow example using ANUGA

Water flowing down a channel
"""

#--
Import necessary modules
#--

Import standard shallow water domain and standard boundaries.
import anuga

#--
Setup computational domain
#--
points, vertices, boundary = anuga.rectangular_cross(10, 5,

len1=10.0, len2=5.0) # Mesh

domain = anuga.Domain(points, vertices, boundary) # Create domain
domain.set_name(’channel1’) # Output name

#--
Setup initial conditions
#--
def topography(x, y):

return -x/10 # linear bed slope

4.4. A slightly more complex example 15

domain.set_quantity(’elevation’, topography) # Use function for elevation
domain.set_quantity(’friction’, 0.01) # Constant friction
domain.set_quantity(’stage’, # Dry bed

expression=’elevation’)

#--
Setup boundary conditions
#--
Bi = anuga.Dirichlet_boundary([0.4, 0, 0]) # Inflow
Br = anuga.Reflective_boundary(domain) # Solid reflective wall

domain.set_boundary({’left’: Bi, ’right’: Br, ’top’: Br, ’bottom’: Br})

#--
Evolve system through time
#--
for t in domain.evolve(yieldstep=0.2, finaltime=40.0):

print domain.timestepping_statistics()

In discussing the details of this example, we follow the outline given above, discussing each major step of the code in
turn.

4.4.4 Establishing the Mesh

In this example we use a similar simple structured triangular mesh as in ‘runup.py’ for simplicity, but this time we will
use a symmetric one and also change the physical extent of the domain. The assignment:

points, vertices, boundary = anuga.rectangular_cross(m, n, len1=length, len2=width)

returns an mxn mesh similar to the one used in the previous example, except that now the extent in the x and y
directions are given by the value of length and width respectively.

Defining m and n in terms of the extent as in this example provides a convenient way of controlling the resolution: By
defining dx and dy to be the desired size of each hypotenuse in the mesh we can write the mesh generation as follows:

length = 10.0
width = 5.0
dx = dy = 1 # Resolution: Length of subdivisions on both axes

points, vertices, boundary = anuga.rectangular_cross(int(length/dx), int(width/dy),
len1=length, len2=width)

which yields a mesh of length=10m, width=5m with 1m spacings. To increase the resolution, as we will later in this
example, one merely decreases the values of dx and dy.

The rest of this script is similar to the previous example on page 8.

4.5 Model Output

The following figure is a screenshot from the ANUGA visualisation tool anuga_viewer of output from this exam-
ple.

16 Chapter 4. Getting Started

Figure 4.3: Simple channel example viewed with the ANUGA viewer.

4.5.1 Changing boundary conditions on the fly

Here is the code for the second version of the channel flow ‘channel2.py’:

"""Simple water flow example using ANUGA

Water flowing down a channel with changing boundary conditions
"""

#--
Import necessary modules
#--
import anuga

#--
Setup computational domain
#--
length = 10.
width = 5.
dx = dy = 1 # Resolution: Length of subdivisions on both axes

points, vertices, boundary = anuga.rectangular_cross(int(length/dx),
int(width/dy), len1=length, len2=width)

domain = anuga.Domain(points, vertices, boundary)
domain.set_name(’channel2’) # Output name

#--
Setup initial conditions
#--
def topography(x,y):

return -x/10 # linear bed slope

domain.set_quantity(’elevation’, topography) # Use function for elevation
domain.set_quantity(’friction’, 0.01) # Constant friction
domain.set_quantity(’stage’,

4.5. Model Output 17

expression=’elevation’) # Dry initial condition

#--
Setup boundary conditions
#--
Bi = anuga.Dirichlet_boundary([0.4, 0, 0]) # Inflow
Br = anuga.Reflective_boundary(domain) # Solid reflective wall
Bo = anuga.Dirichlet_boundary([-5, 0, 0]) # Outflow

domain.set_boundary({’left’: Bi, ’right’: Br, ’top’: Br, ’bottom’: Br})

#--
Evolve system through time
#--
for t in domain.evolve(yieldstep=0.2, finaltime=40.0):

print domain.timestepping_statistics()

if domain.get_quantity(’stage’).\
get_values(interpolation_points=[[10, 2.5]]) > 0:

print ’Stage > 0: Changing to outflow boundary’
domain.set_boundary({’right’: Bo})

This example differs from the first version in that a constant outflow boundary condition has been defined:

Bo = anuga.Dirichlet_boundary([-5, 0, 0]) # Outflow

and that it is applied to the right hand side boundary when the water level there exceeds 0m.

for t in domain.evolve(yieldstep=0.2, finaltime=40.0):
domain.write_time()

if domain.get_quantity(’stage’).get_values(interpolation_points=[[10, 2.5]]) > 0:
print ’Stage > 0: Changing to outflow boundary’
domain.set_boundary({’right’: Bo})

The if statement in the timestepping loop (evolve) gets the quantity stage and obtains the interpolated value
at the point (10m, 2.5m) which is on the right boundary. If the stage exceeds 0m a message is printed and the old
boundary condition at tag ’right’ is replaced by the outflow boundary using the method:

domain.set_boundary({’right’: Bo})

This type of dynamically varying boundary could for example be used to model the breakdown of a sluice door when
water exceeds a certain level.

4.5.2 Output

The text output from this example looks like this:

18 Chapter 4. Getting Started

...
Time = 15.4000, delta t in [0.03789902, 0.03789916], steps=6 (6)
Time = 15.6000, delta t in [0.03789896, 0.03789908], steps=6 (6)
Time = 15.8000, delta t in [0.03789891, 0.03789903], steps=6 (6)
Stage > 0: Changing to outflow boundary
Time = 16.0000, delta t in [0.02709050, 0.03789898], steps=6 (6)
Time = 16.2000, delta t in [0.03789892, 0.03789904], steps=6 (6)
...

4.5.3 Flow through more complex topographies

Here is the code for the third version of the channel flow ‘channel3.py’:

"""Simple water flow example using ANUGA

Water flowing down a channel with more complex topography
"""

#--
Import necessary modules
#--
import anuga

#--
Setup computational domain
#--
length = 40.
width = 5.
dx = dy = .1 # Resolution: Length of subdivisions on both axes

points, vertices, boundary = anuga.rectangular_cross(int(length/dx),
int(width/dy), len1=length, len2=width)

domain = anuga.Domain(points, vertices, boundary)
domain.set_name(’channel3’) # Output name
print domain.statistics()

#--
Setup initial conditions
#--
def topography(x,y):

"""Complex topography defined by a function of vectors x and y."""

z = -x/10

N = len(x)
for i in range(N):

Step
if 10 < x[i] < 12:

z[i] += 0.4 - 0.05*y[i]

Constriction
if 27 < x[i] < 29 and y[i] > 3:

z[i] += 2

Pole

4.5. Model Output 19

if (x[i] - 34)**2 + (y[i] - 2)**2 < 0.4**2:
z[i] += 2

return z

domain.set_quantity(’elevation’, topography) # elevation is a function
domain.set_quantity(’friction’, 0.01) # Constant friction
domain.set_quantity(’stage’, expression=’elevation’) # Dry initial condition

#--
Setup boundary conditions
#--
Bi = anuga.Dirichlet_boundary([0.4, 0, 0]) # Inflow
Br = anuga.Reflective_boundary(domain) # Solid reflective wall
Bo = anuga.Dirichlet_boundary([-5, 0, 0]) # Outflow

domain.set_boundary({’left’: Bi, ’right’: Bo, ’top’: Br, ’bottom’: Br})

#--
Evolve system through time
#--
for t in domain.evolve(yieldstep=0.1, finaltime=16.0):

print domain.timestepping_statistics()

if domain.get_quantity(’stage’).\
get_values(interpolation_points=[[10, 2.5]]) > 0:

print ’Stage > 0: Changing to outflow boundary’
domain.set_boundary({’right’: Bo})

This example differs from the first two versions in that the topography contains obstacles.

This is accomplished here by defining the function topography as follows:

def topography(x,y):
"""Complex topography defined by a function of vectors x and y."""

z = -x/10

N = len(x)
for i in range(N):

Step
if 10 < x[i] < 12:

z[i] += 0.4 - 0.05*y[i]

Constriction
if 27 < x[i] < 29 and y[i] > 3:

z[i] += 2

Pole
if (x[i] - 34)**2 + (y[i] - 2)**2 < 0.4**2:

z[i] += 2

return z

In addition, changing the resolution to dx = dy = 0.1 creates a finer mesh resolving the new features better.

A screenshot of this model at time 15s is:

20 Chapter 4. Getting Started

Figure 4.4: More complex flow in a channel

4.6 An Example with Real Data

The following discussion builds on the concepts introduced through the ‘runup.py’ example and introduces a second
example, ‘runcairns.py’. This refers to a hypothetical scenario using real-life data, in which the domain of interest
surrounds the Cairns region. Two scenarios are given; firstly, a hypothetical tsunami wave is generated by a submarine
mass failure situated on the edge of the continental shelf, and secondly, a fixed wave of given amplitude and period is
introduced through the boundary.

Each scenario has been designed to generate a tsunami which will inundate the Cairns region. To achieve
this, suitably large parameters were chosen and were not based on any known tsunami sources or realistic
amplitudes.

4.6.1 Overview

As in the case of ‘runup.py’, the actions carried out by the program can be organised according to this outline:

1. Set up a triangular mesh.

2. Set certain parameters governing the mode of operation of the model – specifying, for instance, where to store
the model output.

3. Input various quantities describing physical measurements, such as the elevation, to be specified at each mesh
point (vertex).

4. Set up the boundary conditions.

5. Carry out the evolution of the model through a series of time steps and output the results, providing a results file
that can be visualised.

4.6.2 The Code

Here is the code for ‘runcairns.py’:

4.6. An Example with Real Data 21

"""Script for running a tsunami inundation scenario for Cairns, QLD Australia.

Source data such as elevation and boundary data is assumed to be available in
directories specified by project.py
The output sww file is stored in directory named after the scenario, i.e
slide or fixed_wave.

The scenario is defined by a triangular mesh created from project.polygon,
the elevation data and a tsunami wave generated by a submarine mass failure.

Geoscience Australia, 2004-present
"""

#--
Import necessary modules
#--
Standard modules
import os
import time
import sys

Related major packages
import anuga

Application specific imports
import project # Definition of file names and polygons

#--
Preparation of topographic data
Convert ASC 2 DEM 2 PTS using source data and store result in source data
#--
Create DEM from asc data
anuga.asc2dem(project.name_stem+’.asc’, use_cache=True, verbose=True)

Create pts file for onshore DEM
anuga.dem2pts(project.name_stem+’.dem’, use_cache=True, verbose=True)

#--
Create the triangular mesh and domain based on
overall clipping polygon with a tagged
boundary and interior regions as defined in project.py
#--
domain = anuga.create_domain_from_regions(project.bounding_polygon,

boundary_tags={’top’: [0],
’ocean_east’: [1],
’bottom’: [2],
’onshore’: [3]},

maximum_triangle_area=project.default_res,
mesh_filename=project.meshname,
interior_regions=project.interior_regions,
use_cache=True,
verbose=True)

Print some stats about mesh and domain
print ’Number of triangles = ’, len(domain)
print ’The extent is ’, domain.get_extent()
print domain.statistics()

#--

22 Chapter 4. Getting Started

Setup parameters of computational domain
#--
domain.set_name(’cairns_’ + project.scenario) # Name of sww file
domain.set_datadir(’.’) # Store sww output here
domain.set_minimum_storable_height(0.01) # Store only depth > 1cm

#--
Setup initial conditions
#--
tide = 0.0
domain.set_quantity(’stage’, tide)
domain.set_quantity(’friction’, 0.0)
domain.set_quantity(’elevation’,

filename=project.name_stem + ’.pts’,
use_cache=True,
verbose=True,
alpha=0.1)

#--
Setup information for slide scenario (to be applied 1 min into simulation
#--
if project.scenario == ’slide’:

Function for submarine slide
tsunami_source = anuga.slide_tsunami(length=35000.0,

depth=project.slide_depth,
slope=6.0,
thickness=500.0,
x0=project.slide_origin[0],
y0=project.slide_origin[1],
alpha=0.0,
domain=domain,
verbose=True)

#--
Setup boundary conditions
#--
print ’Available boundary tags’, domain.get_boundary_tags()

Bd = anuga.Dirichlet_boundary([tide, 0, 0]) # Mean water level
Bs = anuga.Transmissive_stage_zero_momentum_boundary(domain) # Neutral boundary

if project.scenario == ’fixed_wave’:
Huge 50m wave starting after 60 seconds and lasting 1 hour.
Bw = anuga.Time_boundary(domain=domain,

function=lambda t: [(60<t<3660)*50, 0, 0])
domain.set_boundary({’ocean_east’: Bw,

’bottom’: Bs,
’onshore’: Bd,
’top’: Bs})

if project.scenario == ’slide’:
Boundary conditions for slide scenario
domain.set_boundary({’ocean_east’: Bd,

’bottom’: Bd,
’onshore’: Bd,
’top’: Bd})

#--
Evolve system through time

4.6. An Example with Real Data 23

#--
import time
t0 = time.time()

from numpy import allclose

if project.scenario == ’slide’:
Initial run without any event
for t in domain.evolve(yieldstep=10, finaltime=60):

print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

Add slide to water surface
if allclose(t, 60):

domain.add_quantity(’stage’, tsunami_source)

Continue propagating wave
for t in domain.evolve(yieldstep=10, finaltime=5000,

skip_initial_step=True):
print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

if project.scenario == ’fixed_wave’:
Save every two mins leading up to wave approaching land
for t in domain.evolve(yieldstep=120, finaltime=5000):

print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

Save every 30 secs as wave starts inundating ashore
for t in domain.evolve(yieldstep=10, finaltime=10000,

skip_initial_step=True):
print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

print ’That took %.2f seconds’ %(time.time()-t0)

In discussing the details of this example, we follow the outline given above, discussing each major step of the code in
turn.

4.6.3 Establishing the Mesh

One obvious way that the present example differs from ‘runup.py’ is in the use of a more complex method to create
the mesh. Instead of imposing a mesh structure on a rectangular grid, the technique used for this example involves
building mesh structures inside polygons specified by the user, using a mesh-generator.

The mesh-generator creates the mesh within a single polygon whose vertices are at geographical locations specified
by the user. The user specifies the resolution – that is, the maximal area of a triangle used for triangulation – and a
triangular mesh is created inside the polygon using a mesh generation engine. On any given platform, the same mesh
will be returned each time the script is run.

Boundary tags are not restricted to ’left’, ’bottom’, ’right’ and ’top’, as in the case of ‘runup.py’. Instead
the user specifies a list of tags appropriate to the configuration being modelled.

In addition, the mesh-generator provides a way to adapt to geographic or other features in the landscape, whose
presence may require an increase in resolution. This is done by allowing the user to specify a number of interior
polygons, each with a specified resolution. It is also possible to specify one or more ’holes’ – that is, areas bounded
by polygons in which no triangulation is required.

24 Chapter 4. Getting Started

In its general form, the mesh-generator takes for its input a bounding polygon and (optionally) a list of interior poly-
gons. The user specifies resolutions, both for the bounding polygon and for each of the interior polygons. Given this
data, the mesh-generator first creates a triangular mesh with varying resolution.

The function used to implement this process is create_domain_from_regions which creates a Domain object
as well as a mesh file. Its arguments include the bounding polygon and its resolution, a list of boundary tags, and a list
of pairs [polygon, resolution] specifying the interior polygons and their resolutions.

The resulting mesh is output to a mesh file. This term is used to describe a file of a specific format used to store the data
specifying a mesh. (There are in fact two possible formats for such a file: it can either be a binary file, with extension
.msh, or an ASCII file, with extension .tsh. In the present case, the binary file format .msh is used. See Section
6.1 (page 63) for more on file formats.

In practice, the details of the polygons used are read from a separate file ‘project.py’. Here is a complete listing of
‘project.py’:

""" Common filenames and locations for topographic data, meshes and outputs.
This file defines the parameters of the scenario you wish to run.

"""

import anuga

#--
Define scenario as either slide or fixed_wave. Choose one.
#--
scenario = ’fixed_wave’ # Huge wave applied at the boundary
#scenario = ’slide’ # Slide wave form applied inside the domain

#--
Filenames
#--
name_stem = ’cairns’
meshname = name_stem + ’.msh’

Filename for locations where timeseries are to be produced
gauge_filename = ’gauges.csv’

#--
Domain definitions
#--
bounding polygon for study area
bounding_polygon = anuga.read_polygon(’extent.csv’)

A = anuga.polygon_area(bounding_polygon) / 1000000.0
print ’Area of bounding polygon = %.2f kmˆ2’ % A

#--
Interior region definitions
#--
Read interior polygons
poly_cairns = anuga.read_polygon(’cairns.csv’)
poly_island0 = anuga.read_polygon(’islands.csv’)
poly_island1 = anuga.read_polygon(’islands1.csv’)
poly_island2 = anuga.read_polygon(’islands2.csv’)
poly_island3 = anuga.read_polygon(’islands3.csv’)
poly_shallow = anuga.read_polygon(’shallow.csv’)

Optionally plot points making up these polygons
#plot_polygons([bounding_polygon, poly_cairns, poly_island0, poly_island1,

4.6. An Example with Real Data 25

poly_island2, poly_island3, poly_shallow],
style=’boundingpoly’, verbose=False)

Define resolutions (max area per triangle) for each polygon
Make these numbers larger to reduce the number of triangles in the model,
and hence speed up the simulation
default_res = 10000000 # Background resolution
islands_res = 100000
cairns_res = 100000
shallow_res = 500000

Define list of interior regions with associated resolutions
interior_regions = [[poly_cairns, cairns_res],

[poly_island0, islands_res],
[poly_island1, islands_res],
[poly_island2, islands_res],
[poly_island3, islands_res],
[poly_shallow, shallow_res]]

#--
Data for exporting ascii grid
#--
eastingmin = 363000
eastingmax = 418000
northingmin = 8026600
northingmax = 8145700

#--
Data for landslide
#--
slide_origin = [451871, 8128376] # Assume to be on continental shelf
slide_depth = 500.

Figure 4.5 illustrates the landscape of the region for the Cairns example. Understanding the landscape is important
in determining the location and resolution of interior polygons. The supporting data is found in the ASCII grid,
cairns.asc, which has been sourced from the publically available Australian Bathymetry and Topography Grid
2005, [grid250]. The required resolution for inundation modelling will depend on the underlying topography and
bathymetry; as the terrain becomes more complex, the desired resolution would decrease to the order of tens of
metres.

26 Chapter 4. Getting Started

Figure 4.5: Landscape of the Cairns scenario.

The following statements are used to read in the specific polygons from project.cairns and assign a defined
resolution to each polygon.

islands_res = 100000
cairns_res = 100000
shallow_res = 500000
interior_regions = [[project.poly_cairns, cairns_res],

[project.poly_island0, islands_res],
[project.poly_island1, islands_res],
[project.poly_island2, islands_res],
[project.poly_island3, islands_res],
[project.poly_shallow, shallow_res]]

Figure 4.6 illustrates the polygons used for the Cairns scenario.

4.6. An Example with Real Data 27

Figure 4.6: Interior and bounding polygons for the Cairns example.

The statement:

remainder_res = 10000000
domain = anuga.create_domain_from_regions(project.bounding_polygon,

boundary_tags={’top’: [0],
’ocean_east’: [1],
’bottom’: [2],
’onshore’: [3]},

maximum_triangle_area=project.default_res,
mesh_filename=project.meshname,
interior_regions=project.interior_regions,
use_cache=True,
verbose=True)

is then used to create the mesh, taking the bounding polygon to be the polygon bounding_polygon specified
in ‘project.py’. The argument boundary_tags assigns a dictionary, whose keys are the names of the boundary
tags used for the bounding polygon – ’top’, ’ocean_east’, ’bottom’, and ’onshore’ – and whose values
identify the indices of the segments associated with each of these tags. The polygon may be arranged either clock-wise
or counter clock-wise and the indices refer to edges in the order they appear: Edge 0 connects vertex 0 and vertex 1,
edge 1 connects vertex 1 and 2; and so forth. (Here, the values associated with each boundary tag are one-element
lists, but they can have as many indices as there are edges) If polygons intersect, or edges coincide (or are even very
close) the resolution may be undefined in some regions. Use the underlying mesh interface for such cases (see Chapter
5.2). If a segment is omitted in the tags definition an Exception is raised.

Note that every point on each polygon defining the mesh will be used as vertices in triangles. Consequently, polygons
with points very close together will cause triangles with very small areas to be generated irrespective of the requested
resolution. Make sure points on polygons are spaced to be no closer than the smallest resolution requested.

4.6.4 Initialising the Domain

Since we used create_domain_from_regions to create the mesh file, we do not need to create the domain
explicitly, as the above function does both mesh and domain creation.

28 Chapter 4. Getting Started

The following statements specify a basename and data directory, and sets a minimum storable height, which helps
with visualisation and post-processing if one wants to remove water less than 1cm deep (for instance).

domain.set_name(’cairns_’ + project.scenario) # Name of SWW file
domain.set_datadir(’.’) # Store SWW output here
domain.set_minimum_storable_height(0.01) # Store only depth > 1cm

4.6.5 Initial Conditions

Quantities for ‘runcairns.py’ are set using similar methods to those in ‘runup.py’. However, in this case, many of the
values are read from the auxiliary file ‘project.py’ or, in the case of elevation, from an auxiliary points file.

4.6.5.1 Stage

The stage is initially set to 0.0 (i.e. Mean Sea Level) by the following statements:

tide = 0.0
domain.set_quantity(’stage’, tide)

It could also take the value of the highest astronomical tide.

4.6.5.2 Friction

We assign the friction exactly as we did for ‘runup.py’:

domain.set_quantity(’friction’, 0.0)

4.6.5.3 Elevation

The elevation is specified by reading data from a file with a name derived from project.demname with the .pts
extension:

domain.set_quantity(’elevation’,
filename=project.demname + ’.pts’,
use_cache=True,
verbose=True,
alpha=0.1)

The alpha parameter controls how smooth the elevation surface should be. See section A.7, page 88.

Setting cache=True allows ANUGA to save the result in order to make subsequent runs faster.

Using verbose=True tells the function to write diagnostics to the screen.

4.6.6 Boundary Conditions

Setting boundaries follows a similar pattern to the one used for ‘runup.py’, except that in this case we need to associate
a boundary type with each of the boundary tag names introduced when we established the mesh. In place of the four

4.6. An Example with Real Data 29

boundary types introduced for ‘runup.py’, we use the reflective boundary for each of the tagged segments defined by
create_domain_from_regions:

Bd = anuga.Dirichlet_boundary([tide,0,0]) # Mean water level
Bs = anuga.Transmissive_stage_zero_momentum_boundary(domain) # Neutral boundary

if project.scenario == ’fixed_wave’:
Huge 50m wave starting after 60 seconds and lasting 1 hour.
Bw = anuga.Time_boundary(domain=domain,

function=lambda t: [(60<t<3660)*50, 0, 0])
domain.set_boundary({’ocean_east’: Bw,

’bottom’: Bs,
’onshore’: Bd,
’top’: Bs})

if project.scenario == ’slide’:
Boundary conditions for slide scenario
domain.set_boundary({’ocean_east’: Bd,

’bottom’: Bd,
’onshore’: Bd,
’top’: Bd})

Note that we use different boundary conditions depending on the scenario defined in ‘project.py’.

It is not a requirement in ANUGA to have this code structure, just an example of how the script can take different
actions depending on a variable.

4.6.7 Evolution

With the basics established, the running of the ’evolve’ step is very similar to the corresponding step in ‘runup.py’,
except we have different evolve loops for the two scenarios.

For the slide scenario, the simulation is run for an intial 60 seconds, at which time the slide occurs. We use the function
tsunami_source to adjust stage values. We then run the simulation until 5000 seconds with the output stored
every ten seconds:

30 Chapter 4. Getting Started

if project.scenario == ’slide’:
Initial run without any event
for t in domain.evolve(yieldstep=10, finaltime=60):

print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

Add slide to water surface
if allclose(t, 60):

domain.add_quantity(’stage’, tsunami_source)

Continue propagating wave
for t in domain.evolve(yieldstep=10, finaltime=5000,

skip_initial_step=True):
print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

if project.scenario == ’fixed_wave’:
Save every two mins leading up to wave approaching land
for t in domain.evolve(yieldstep=120, finaltime=5000):

print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

Save every 30 secs as wave starts inundating ashore
for t in domain.evolve(yieldstep=10, finaltime=10000,

skip_initial_step=True):
print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

For the fixed wave scenario, the simulation is run to 10000 seconds, with the first half of the simulation stored at two
minute intervals, and the second half of the simulation stored at ten second intervals. This functionality is especially
convenient as it allows the detailed parts of the simulation to be viewed at higher time resolution.

This also demonstrates the ability of ANUGA to dynamically override values. The method add_quantity()
works like set_quantity() except that it adds the new surface to what exists already. In this case it adds the initial
shape of the water displacement to the water level.

4.7 Exploring the Model Output

Now that the scenario has been run, the user can view the output in a number of ways. As described earlier, the user
may run anuga_viewer to view a three-dimensional representation of the simulation.

The user may also be interested in a maximum inundation map. This simply shows the maximum water depth over
the domain and is achieved with the function sww2dem described in Section 6.1.9). ‘ExportResults.py’ demonstrates
how this function can be used:

import os
import sys
import project

import anuga

scenario = ’slide’
name = ’cairns_’ + scenario

print ’output dir:’, name

4.7. Exploring the Model Output 31

which_var = 3

if which_var == 0: # Stage
outname = name + ’_stage’
quantityname = ’stage’

if which_var == 1: # Absolute Momentum
outname = name + ’_momentum’
quantityname = ’(xmomentum**2 + ymomentum**2)**0.5’ #Absolute momentum

if which_var == 2: # Depth
outname = name + ’_depth’
quantityname = ’stage-elevation’ #Depth

if which_var == 3: # Speed
outname = name + ’_speed’
quantityname = ’(xmomentum**2 + ymomentum**2)**0.5/(stage-elevation+1.e-30)’ #Speed

if which_var == 4: # Elevation
outname = name + ’_elevation’
quantityname = ’elevation’ #Elevation

print ’start sww2dem’

anuga.sww2dem(name+’.sww’,
outname+’.asc’,
quantity=quantityname,
cellsize=100,
easting_min=project.eastingmin,
easting_max=project.eastingmax,
northing_min=project.northingmin,
northing_max=project.northingmax,
reduction=max,
verbose=True)

The script generates a maximum water depth ASCII grid at a defined resolution (here 100 m2) which can then be
viewed in a GIS environment, for example. The parameters used in the function are defined in ‘project.py’. Figures 4.7
and 4.8 show the maximum water depth within the defined region for the slide and fixed wave scenario respectively.
Note, these inundation maps have been based on purely hypothetical scenarios and were designed explicitly for
demonstration purposes only. The user could develop a maximum absolute momentum or other expressions which
can be derived from the quantities. It must be noted here that depth is more meaningful when the elevation is positive
(depth = stage − elevation) as it describes the water height above the available elevation. When the elevation
is negative, depth is meauring the water height from the sea floor. With this in mind, maximum inundation maps are
typically ”clipped” to the coastline. However, the data input here did not contain a coastline.

32 Chapter 4. Getting Started

Figure 4.7: Maximum inundation map for the Cairns slide scenario. Note, this inundation map has been based on a purely
hypothetical scenario which was designed explictiy for demonstration purposes only.

4.7. Exploring the Model Output 33

Figure 4.8: Maximum inundation map for the Cairns fixed wave scenario. Note, this inundation map has been based on a purely
hypothetical scenario which was designed explictiy for demonstration purposes only.

34 Chapter 4. Getting Started

The user may also be interested in interrogating the solution at a particular spatial location to understand the behaviour
of the system through time. To do this, the user must first define the locations of interest. A number of locations have
been identified for the Cairns scenario, as shown in Figure 4.9.

Figure 4.9: Point locations to show time series information for the Cairns scenario.

These locations must be stored in either a .csv or .txt file. The corresponding .csv file for the gauges shown in Figure
4.9 is ‘gauges.csv’:

easting,northing,name,elevation
367622.63,8128196.42,Cairns,0
360245.11,8142280.78,Trinity Beach,0
386133.51,8131751.05,Cairns Headland,0
430250,8128812.23,Elford Reef,0
367771.61,8133933.82,Cairns Airport,0

Header information has been included to identify the location in terms of eastings and northings, and each gauge is
given a name. The elevation column can be zero here. This information is then passed to the function sww2csv_-
gauges (shown in ‘GetTimeseries.py’ which generates the csv files for each point location. The CSV files can then be
used in csv2timeseries_graphs to create the timeseries plot for each desired quantity. csv2timeseries_-
graphs relies on pylab to be installed which is not part of the standard anuga release, however it can be down-
loaded and installed from http://matplotlib.sourceforge.net/

"""
Generate time series of nominated "gauges" read from project.gauge_filename. This
is done by first running sww2csv_gauges on two different directories to make
’csv’ files. Then running csv2timeseries_graphs detailing the two directories
containing the csv file and produces one set of graphs in the ’output_dir’ containing

4.7. Exploring the Model Output 35

the details at the gauges for both these sww files.

Note, this script will only work if pylab is installed on the platform
"""

from os import sep
import project
import anuga

anuga.sww2csv_gauges(’cairns_slide.sww’,
project.gauge_filename,
quantities=[’stage’,’speed’,’depth’,’elevation’],
verbose=True)

anuga.sww2csv_gauges(’cairns_fixed_wave.sww’,
project.gauge_filename,
quantities=[’stage’, ’speed’,’depth’,’elevation’],
verbose=True)

try:
import pylab
anuga.csv2timeseries_graphs(directories_dic={’slide’+sep: [’Slide’,0, 0],

’fixed_wave’+sep: [’Fixed Wave’,0,0]},
output_dir=’fixed_wave’+sep,
base_name=’gauge_’,
plot_numbers=’’,
quantities=[’stage’,’speed’,’depth’],
extra_plot_name=’’,
assess_all_csv_files=True,
create_latex=False,
verbose=True)

except ImportError:
#ANUGA does not rely on pylab to work
print ’must have pylab installed to generate plots’

Here, the time series for the quantities stage, depth and speed will be generated for each gauge defined in the gauge
file. As described earlier, depth is more meaningful for onshore gauges, and stage is more appropriate for offshore
gauges.

As an example output, Figure 4.10 shows the time series for the quantity stage for the Elford Reef location for each
scenario (the elevation at this location is negative, therefore stage is the more appropriate quantity to plot). Note the
large negative stage value when the slide was introduced. This is due to the double Gaussian form of the initial surface
displacement of the slide. By contrast, the time series for depth is shown for the onshore location of the Cairns Airport
in Figure 4.11.

36 Chapter 4. Getting Started

Figure 4.10: Time series information of the quantity stage for the Elford Reef location for the fixed wave and slide scenario.

4.7. Exploring the Model Output 37

Figure 4.11: Time series information of the quantity depth for the Cairns Airport location for the slide and fixed wave scenario.

38 Chapter 4. Getting Started

CHAPTER

FIVE

ANUGA Public Interface

This chapter gives an overview of the features of ANUGA available to the user at the public interface. These are
grouped under the following headings, which correspond to the outline of the examples described in Chapter 4:

• Establishing the Mesh: Section 5.3

• Initialising the Domain: Section 5.4

• Initial Conditions: Section 5.5

• Boundary Conditions: Section 5.6

• Forcing Terms: Section 5.7

• Evolution: Section 5.8

5.1 Documentation

The listings here are intended merely to give the reader an idea of what each feature is and how it can be used – they
do not give full specifications; for these the reader may consult the programmer’s guide. The code for every function
or class contains a documentation string, or ’docstring’, that specifies the precise syntax for its use. This appears
immediately after the line introducing the code, between two sets of triple quotes.

Python has a handy tool that lets you easily navigate this documentation, called pydoc. In Linux, it runs as a server,
which serves the documentation up to your web browser:

1. Open a terminal at your anuga_source/anuga folder 2. Start the python documentation server with pydoc
-p 6767 3. Open a browser and type in http://localhost:6767/

Now you have a real-time programmers’ guide for ANUGA , and an easy way to find the functions you are interested
in. Pydoctor and other Python doc generators look nicer and have graphs, etc, but pydoc works straight out of the box.

5.2 Public vs Private Interface

To simplify the process of writing scripts, ANUGA has a public API which packages up all the commonly-used
functionality of ANUGA in the one place. To use it, simply import the anuga module like so:

import anuga

You can now use the public API like so. Note the anuga. prefix:

39

anuga.sww2dem(’in.sww’, ’out.asc’)

If you wish to delve ”under the hood” and modify the way ANUGA runs at a more advanced level, you need to specify
the full location of the module like so:

from anuga.fit_interpolate.interpolate import Interpolation_interface

All modules are in the folder ‘inundation’ or one of its subfolders, and the location of each module is described
relative to ‘inundation’. Rather than using pathnames, whose syntax depends on the operating system, we use the
format adopted for importing the function or class for use in Python code. For example, suppose we wish to specify
that the function create_mesh_from_regions is in a module called mesh_interface in a subfolder of
inundation called pmesh. In Linux or Unix syntax, the pathname of the file containing the function, relative to
‘inundation’, would be:

pmesh/mesh_interface.py

while in Windows syntax it would be:

pmesh\mesh_interface.py

Rather than using either of these forms, in this chapter we specify the location simply as anuga.pmesh.mesh_-
interface, in keeping with the usage in the Python statement for importing the function, namely:

from anuga.pmesh.mesh_interface import create_mesh_from_regions

The following parameters are common to many functions and classes and are omitted from the descriptions given
below:

use cache Specifies whether caching is to be used for improved performance. See Section A.1 for details on
the underlying caching functionality

verbose If True, provides detailed terminal output to the user

5.3 Mesh Generation

Before discussing the part of the interface relating to mesh generation, we begin with a description of a simple example
of a mesh and use it to describe how mesh data is stored.

Figure 5.1 represents a very simple mesh comprising just 11 points and 10 triangles.

40 Chapter 5. ANUGA Public Interface

Figure 5.1: A simple mesh

5.3. Mesh Generation 41

The variables points, triangles and boundary represent the data displayed in Figure 5.1 as follows. The list
points stores the coordinates of the points, and may be displayed schematically as in Table 5.1.

index x y
0 1 1
1 4 2
2 8 1
3 1 3
4 5 5
5 8 6
6 11 5
7 3 6
8 1 8
9 4 9
10 10 7

Table 5.1: Point coordinates for mesh in Figure 5.1

The list triangles specifies the triangles that make up the mesh. It does this by specifying, for each triangle, the
indices (the numbers shown in the first column above) that correspond to the three points at the triangles vertices, taken
in an anti-clockwise order around the triangle. Thus, in the example shown in Figure 5.1, the variable triangles
contains the entries shown in Table 5.2. The starting point is arbitrary so triangle (0, 1, 3) is considered the same as
(1, 3, 0) and (3, 0, 1).

index points
0 0 1 3
1 1 2 4
2 2 5 4
3 2 6 5
4 4 5 9
5 4 9 7
6 3 4 7
7 7 9 8
8 1 4 3
9 5 10 9

Table 5.2: Triangles for mesh in Figure 5.1

Finally, the variable boundary identifies the boundary triangles and associates a tag with each.

create_mesh_from_regions(bounding polygon, boundary tags, maximum triangle area=None, file-
name=None, interior regions=None, interior holes=None, hole tags=None,
poly geo reference=None, mesh geo reference=None, minimum triangle an-
gle=28.0, fail if polygons outside=True, breaklines=None, use cache=False,
verbose=True)

Module: pmesh.mesh_interface

This function allows a user to initiate the automatic creation of a mesh inside a specified polygon (input
bounding_polygon). Among the parameters that can be set are the resolution (maximal area for any tri-
angle in the mesh) and the minimal angle allowable in any triangle. The user can specify a number of internal
polygons within each of which the resolution of the mesh can be specified. interior_regions is a paired
list containing the interior polygon and its resolution. Additionally, the user specifies a list of boundary tags,
one for each edge of the bounding polygon.

42 Chapter 5. ANUGA Public Interface

breaklines lets you force a split along a boundary within the mesh. For example, a kerb or the edge of a
dyke could be specified here. (new in 1.2)

interior_holes lets you specify polygons as empty holes in the mesh. This can be used to represent
buildings, pylons and other immovable structures. These polygons do not need to be closed, but their points
must be specified in a counter-clockwise order.(new in 1.2)

WARNING. Note that the dictionary structure used for the parameter boundary_tags is different from that
used for the variable boundary that occurs in the specification of a mesh. In the case of boundary, the tags
are the values of the dictionary, whereas in the case of boundary_tags, the tags are the keys and the value
corresponding to a particular tag is a list of numbers identifying boundary edges labelled with that tag. Because
of this, it is theoretically possible to assign the same edge to more than one tag. However, an attempt to do this
will cause an error.

WARNING. Do not have polygon lines cross or be on-top of each other. This can result in regions of unspecified
resolutions, and ANUGA will give you an error. Do not have polygon close to each other. This can result in
the area between the polygons having small triangles. For more control over the mesh outline use the methods
described below.

create_domain_from_regions(bounding polygon, boundary tags, maximum triangle area=None, mesh -
filename=None, interior regions=None, interior holes=None, poly geo -
reference=None, mesh geo reference=None, minimum triangle angle=28.0,
fail if polygons outside=True, use cache=False, verbose=True)

Module: interface.py

This higher-level function allows a user to create a domain (and associated mesh) inside a specified polygon.

bounding_polygon is a list of points in Eastings and Northings, relative to the zone stated in poly_-
geo_reference if specified. Otherwise points are just x, y coordinates with no particular association to any
location.

boundary_tags is a dictionary of symbolic tags. For every tag there is a list of indices referring to segments
associated with that tag. If a segment is omitted it will be assigned the default tag ”.

maximum_triangle_area is the maximal area per triangle for the bounding polygon, excluding the interior
regions.

interior_holes lets you specify polygons as empty holes in the mesh. This can be used to represent
buildings, pylons and other immovable structures. These polygons do not need to be closed, but their points
must be specified in a counter-clockwise order.(new in 1.2)

mesh_filename is the name of the file to contain the generated mesh data.

interior_regions is a list of tuples consisting of (polygon, resolution) for each region to be separately
refined. Do not have polygon lines cross or be on-top of each other. Also do not have polygons close to each
other.

poly_geo_reference is the geo reference of the bounding polygon and the interior polygons. If none,
assume absolute. Please pass one though, since absolute references have a zone.

mesh_geo_reference is the geo reference of the mesh to be created. If none is given one will be automat-
ically generated. It will use the lower left hand corner of bounding polygon (absolute) as the x and y values for
the geo ref.

minimum_triangle_angle is the minimum angle allowed for each generated triangle. This controls the
slimness allowed for a triangle.

fail_if_polygons_outside – if True (the default) an Exception in thrown if interior polygons fall out-
side the bounding polygon. If False, these will be ignored and execution continues.

WARNING. Note that the dictionary structure used for the parameter boundary_tags is different from that
used for the variable boundary that occurs in the specification of a mesh. In the case of boundary, the tags
are the values of the dictionary, whereas in the case of boundary_tags, the tags are the keys and the value
corresponding to a particular tag is a list of numbers identifying boundary edges labelled with that tag. Because

5.3. Mesh Generation 43

of this, it is theoretically possible to assign the same edge to more than one tag. However, an attempt to do this
will cause an error.

WARNING. Do not have polygon lines cross or be on-top of each other. This can result in regions of unspecified
resolutions. Do not have polygon close to each other. This can result in the area between the polygons having
small triangles. For more control over the mesh outline use the methods described below.

5.3.1 Advanced mesh generation

For more control over the creation of the mesh outline, use the methods of the class Mesh.

class Mesh(userSegments=None, userVertices=None, holes=None, regions=None, geo reference=None)
Module: pmesh.mesh

A class used to build a mesh outline and generate a two-dimensional triangular mesh. The mesh outline is used
to describe features on the mesh, such as the mesh boundary. Many of this class’s methods are used to build a
mesh outline, such as add_vertices() and add_region_from_polygon().

userSegments and userVertices define the outline enclosing the mesh.

holes describes any regions inside the mesh that are not to be included in the mesh.

geo_reference defines the geo reference to which all point information is relative. If geo_reference is
None then the default geo reference is used.

5.3.1.1 Key Methods of Class Mesh

<mesh>.add_hole(x, y, geo reference=None)
Module: pmesh.mesh

This method adds a hole to the mesh outline.

x and y define a point on the already defined hole boundary.

If geo_reference is not supplied the points are assumed to be absolute.

<mesh>.add_hole_from_polygon(polygon, segment tags=None, geo reference=None)
Module: pmesh.mesh

This method is used to add a ’hole’ within a region – that is, to define a interior region where the triangular
mesh will not be generated – to a Mesh instance. The region boundary is described by the polygon passed in.
Additionally, the user specifies a list of boundary tags, one for each edge of the bounding polygon.

polygon is the polygon that defines the hole to be added to the <mesh>.

segment_tags – ??

If geo_reference is None then the default geo_reference is used.

<mesh>.add_points_and_segments(points, segments=None, segment tags=None)
Module: pmesh.mesh

This adds points and segments connecting the points to a mesh.

points is a list of points.

segments is a list of segments. Each segment is defined by the start and end of the line by its point index, e.g.
use segments = [[0,1],[1,2]] to make a polyline between points 0, 1 and 2.

segment_tags may be used to optionally define a tag for each segment.

<mesh>.add_region(x,y, geo reference=None, tag=None)
Module: pmesh.mesh

This method adds a region to a mesh outline.

x and y define a point on the already-defined region that is to be added to the mesh.

44 Chapter 5. ANUGA Public Interface

If geo_reference is not supplied the points data is assumed to be absolute.

tag – ??

A region instance is returned. This can be used to set the resolution of the added region.

<mesh>.add_region_from_polygon(polygon, segment tags=None, max triangle area=None, geo refer-
ence=None, region tag=None)

Module: pmesh.mesh

This method adds a region to a Mesh instance. Regions are commonly used to describe an area with an increased
density of triangles by setting max_triangle_area.

polygon describes the region boundary to add to the <mesh>.

segment_tags specifies a list of segment tags, one for each edge of the bounding polygon.

If geo_reference is not supplied the points data is assumed to be absolute.

region_tag sets the region tag.

<mesh>.add_vertices(point data)
Module: pmesh.mesh

Add user vertices to a mesh.

point_data is the list of point data, and can be a list of (x,y) values, a numeric array or a geospatial data
instance.

<mesh>.auto_segment(alpha=None, raw boundary=True, remove holes=False, smooth indents=False, ex-
pand pinch=False)

Module: pmesh.mesh

Add segments between some of the user vertices to give the vertices an outline. The outline is an alpha shape.
This method is useful since a set of user vertices need to be outlined by segments before generate mesh is called.

alpha determines the smoothness of the alpha shape.

raw_boundary, if True instructs the function to return the raw boundary, i.e. the regular edges of the alpha
shape.

remove_holes, if True enables a filter to remove small holes (small is defined by boundary points fraction).

smooth_indents, if True removes sharp triangular indents in the boundary.

expand_pinch, if True tests for pinch-off and corrects (i.e. a boundary vertex with more than two edges).

<mesh>.export_mesh_file(ofile)
Module: pmesh.mesh

This method is used to save a mesh to a file.

ofile is the name of the mesh file to be written, including the extension. Use the extension .msh for the file
to be in NetCDF format and .tsh for the file to be ASCII format.

<mesh>.generate_mesh(maximum triangle area=””, minimum triangle angle=28.0, verbose=True)
Module: pmesh.mesh

This method is used to generate the triangular mesh.

maximum_triangle_area sets the maximum area of any triangle in the mesh.

minimum_triangle_angle sets the minimum area of any triangle in the mesh.

These two parameters can be used to control the triangle density.

<mesh>.import_ungenerate_file(ofile, tag=None, region tag=None)
Module: pmesh.mesh

This method is used to import a polygon file in the ungenerate format, which is used by arcGIS. The polygons
from the file are converted to vertices and segments.

ofile is the name of the polygon file.

5.3. Mesh Generation 45

tag is the tag given to all the polygon’s segments. If tag is not supplied then the segment will not effect the
water flow, it will only effect the mesh generation.

region_tag is the tag given to all the polygon’s segments. If it is a string the tag will be assigned to all
regions. If it is a list the first value in the list will be applied to the first polygon etc.

This function can be used to import building footprints.

5.4 Initialising the Domain

class Domain(source=None, triangles=None, boundary=None, conserved quantities=None, other quanti-
ties=None, tagged elements=None, geo reference=None, use inscribed circle=False, mesh -
filename=None, use cache=False, verbose=False, full send dict=None, ghost recv dict=None,
processor=0, numproc=1, number of full nodes=None, number of full triangles=None)

Module: abstract_2d_finite_volumes.domain

This class is used to create an instance of a structure used to store and manipulate data associated with a mesh.
The mesh is specified either by assigning the name of a mesh file to source or by specifying the points, triangle
and boundary of the mesh.

5.4.1 Key Methods of Domain

<domain>.set_name(name)
Module: abstract_2d_finite_volumes.domain, page ??
name is used to name the domain. The name is also used to identify the output SWW file. If no name is
assigned to a domain, the assumed name is ’domain’.

<domain>.get_name()
Module: abstract_2d_finite_volumes.domain

Returns the name assigned to the domain by set_name(). If no name has been assigned, returns ’domain’.

<domain>.set_datadir(path)
Module: abstract_2d_finite_volumes.domain

path specifies the path to the directory used to store SWW files.

Before this method is used to set the SWW directory path, the assumed directory path is default_datadir
specified in config.py.

Since different operating systems use different formats for specifying pathnames it is necessary to specify path
separators using the Python code os.sep rather than the operating-specific ones such as ’/’ or ’\’. For this
to work you will need to include the statement import os in your code, before the first use of set_-
datadir().

For example, to set the data directory to a subdirectory data of the directory project, you could use the
statements:

import os
domain.set_datadir{’project’ + os.sep + ’data’}

<domain>.get_datadir()
Module: abstract_2d_finite_volumes.domain

Returns the path to the directory where SWW files will be stored.

If the path has not previously been set with set_datadir() this method will return the value default_-
datadir specified in config.py.

46 Chapter 5. ANUGA Public Interface

<domain>.set_minimum_allowed_height(minimum allowed height)
Module: shallow_water.shallow_water_domain

Set the minimum depth (in metres) that will be recognised in the numerical scheme (including limiters and flux
computations)

minimum_allowed_height is the new minimum allowed height value.

Default value is 10−3 metre, but by setting this to a greater value, e.g. for large scale simulations, the computa-
tion time can be significantly reduced.

<domain>.set_minimum_storable_height(minimum storable height)
Module: shallow_water.shallow_water_domain

Sets the minimum depth that will be recognised when writing to an SWW file. This is useful for removing thin
water layers that seems to be caused by friction creep.

minimum_storable_height is the new minimum storable height value.

<domain>.set_maximum_allowed_speed(maximum allowed speed)
Module: shallow_water.shallow_water_domain

Set the maximum particle speed that is allowed in water shallower than minimum_allowed_height. This
is useful for controlling speeds in very thin layers of water and at the same time allow some movement avoiding
pooling of water.

maximum_allowed_speed sets the maximum allowed speed value.

<domain>.set_time(time=0.0)
Module: abstract_2d_finite_volumes.domain

time sets the initial time, in seconds, for the simulation. The default is 0.0.

<domain>.set_default_order(n)
Module: abstract_2d_finite_volumes.domain

Sets the default (spatial) order to the value specified by n, which must be either 1 or 2. (Assigning any other
value to n will cause an error.)

<domain>.set_store_vertices_uniquely(flag, reduction=None)
Module: shallow_water.shallow_water_domain

Decide whether vertex values should be stored uniquely as computed in the model or whether they should be
reduced to one value per vertex using averaging.

flag may be True (meaning allow surface to be discontinuous) or False (meaning smooth vertex values).

reduction defines the smoothing operation if flag is False. If not supplied, reduction is assumed to
be mean.

Triangles stored in the SWW file can be discontinuous reflecting the internal representation of the finite-volume
scheme (this is a feature allowing for arbitrary steepness of the water surface gradient as well as the momentum
gradients). However, for visual purposes and also for use with Field_boundary (and File_boundary), it
is often desirable to store triangles with values at each vertex point as the average of the potentially discontinuous
numbers found at vertices of different triangles sharing the same vertex location.

Storing one way or the other is controlled in ANUGA through the method <domain>.store_vertices_-
uniquely(). Options are:

•<domain>.store_vertices_uniquely(True): Allow discontinuities in the SWW file

•<domain>.store_vertices_uniquely(False): (Default). Average values to ensure continuity
in SWW file. The latter also makes for smaller SWW files.

Note that when model data in the SWW file are averaged (i.e. not stored uniquely), then there will most likely be
a small discrepancy between values extracted from the SWW file and the same data stored in the model domain.
This must be borne in mind when comparing data from the SWW files with that of the model internally.

5.4. Initialising the Domain 47

<domain>.set_quantities_to_be_stored(quantity dictionary)
Module: shallow_water.shallow_water_domain

Selects quantities that is to be stored in the sww files. The argument can be None, in which case nothing is
stored.

Otherwise, the argument must be a dictionary where the keys are names of quantities already defined within
ANUGA and the values are either 1 or 2. If the value is 1, the quantity will be stored once at the beginning of
the simulation, if the value is 2 it will be stored at each timestep. The ANUGA default is equivalent to the call

domain.set_quantities_to_be_stored({’elevation’: 1,
’stage’: 2,
’xmomentum’: 2,
’ymomentum’: 2})

<domain>.get_nodes(absolute=False)
Module: abstract_2d_finite_volumes.domain

Return x,y coordinates of all nodes in the domain mesh. The nodes are ordered in an Nx2 array where N is the
number of nodes. This is the same format they were provided in the constructor i.e. without any duplication.

absolute is a boolean which determines whether coordinates are to be made absolute by taking georeference
into account. Default is False as many parts of ANUGA expect relative coordinates.

<domain>.get_vertex_coordinates(absolute=False)
Module: abstract_2d_finite_volumes.domain

Return vertex coordinates for all triangles as a 3*Mx2 array where the jth vertex of the ith triangle is located in
row 3*i+j and M is the number of triangles in the mesh.

absolute is a boolean which determines whether coordinates are to be made absolute by taking georeference
into account. Default is False as many parts of ANUGA expect relative coordinates.

<domain>.get_centroid_coordinates(absolute=False)
Module: abstract_2d_finite_volumes.domain

Return centroid coordinates for all triangles as an Mx2 array.

absolute is a boolean which determines whether coordinates are to be made absolute by taking georeference
into account. Default is False as many parts of ANUGA expect relative coordinates.

<domain>.get_triangles(indices=None)
Module: abstract_2d_finite_volumes.domain

Return an Mx3 integer array where M is the number of triangles. Each row corresponds to one triangle and the
three entries are indices into the mesh nodes which can be obtained using the method get_nodes().

indices, if specified, is the set of triangle ids of interest.

<domain>.get_disconnected_triangles()
Module: abstract_2d_finite_volumes.domain

Get the domain mesh based on nodes obtained from get_vertex_coordinates().

Returns an Mx3 array of integers where each row corresponds to a triangle. A triangle is a triplet of indices into
point coordinates obtained from get_vertex_coordinates() and each index appears only once.

This provides a mesh where no triangles share nodes (hence the name disconnected triangles) and different
nodes may have the same coordinates.

This version of the mesh is useful for storing meshes with discontinuities at each node and is e.g. used for storing
data in SWW files.

The triangles created will have the format:

48 Chapter 5. ANUGA Public Interface

[[0,1,2],
[3,4,5],
[6,7,8],
...
[3*M-3 3*M-2 3*M-1]]

5.5 Initial Conditions

In standard usage of partial differential equations, initial conditions refers to the values associated to the system
variables (the conserved quantities here) for time = 0. In setting up a scenario script as described in Sections 4.1
and 4.6, set_quantity is used to define the initial conditions of variables other than the conserved quantities,
such as friction. Here, we use the terminology of initial conditions to refer to initial values for variables which need
prescription to solve the shallow water wave equation. Further, it must be noted that set_quantity() does not
necessarily have to be used in the initial condition setting; it can be used at any time throughout the simulation.

<domain>.set_quantity(numeric=None, quantity=None, function=None, geospatial data=None, file-
name=None, attribute name=None, alpha=None, location=’vertices’, poly-
gon=None, indices=None, smooth=False, verbose=False, use cache=False)

Module: abstract_2d_finite_volumes.domain
(This method passes off to abstract_2d_finite_volumes.quantity.set_values())

This function is used to assign values to individual quantities for a domain. It is very flexible and can be used
with many data types: a statement of the form <domain>.set_quantity(name, x) can be used to
define a quantity having the name name, where the other argument x can be any of the following:

•a number, in which case all vertices in the mesh gets that for the quantity in question

•a list of numbers or a numeric array ordered the same way as the mesh vertices

•a function (e.g. see the samples introduced in Chapter 2)

•an expression composed of other quantities and numbers, arrays, lists (for example, a linear combination
of quantities, such as <domain>.set_quantity(’stage’,’elevation’+x))

•the name of a file from which the data can be read. In this case, the optional argument attribute_name
will select which attribute to use from the file. If left out, set_quantity() will pick one. This is useful
in cases where there is only one attribute

•a geospatial dataset (See Section A.5). Optional argument attribute_name applies here as with files

Exactly one of the arguments numeric, quantity, function, geospatial_data and filename
must be present.

set_quantity() will look at the type of the numeric and determine what action to take.

Values can also be set using the appropriate keyword arguments. If x is a function, for ex-
ample, domain.set_quantity(name, x), domain.set_quantity(name, numeric=x), and
domain.set_quantity(name, function=x) are all equivalent.

Other optional arguments are:

•indices which is a list of ids of triangles to which set_quantity() should apply its assignment of
values.

•location determines which part of the triangles to assign to. Options are ’vertices’ (the default), ’edges’,
’unique vertices’, and ’centroids’. If ’vertices’ is used, edge and centroid values are automatically com-
puted as the appropriate averages. This option ensures continuity of the surface. If, on the other hand,
’centroids’ is used, vertex and edge values will be set to the same value effectively creating a piecewise
constant surface with possible discontinuities at the edges.

5.5. Initial Conditions 49

ANUGA provides a number of predefined initial conditions to be used with set_quantity(). See for
example callable object slump_tsunami below.

<domain>.add_quantity(numeric=None, quantity=None, function=None, geospatial data=None, file-
name=None, attribute name=None, alpha=None, location=’vertices’, poly-
gon=None, indices=None, smooth=False, verbose=False, use cache=False)

Module: abstract_2d_finite_volumes.domain
(passes off to abstract_2d_finite_volumes.domain.set_quantity())

This function is used to add values to individual quantities for a domain. It has the same syntax as
<domain>.set_quantity(name, x).

A typical use of this function is to add structures to an existing elevation model:

Create digital elevation model from points file
domain.set_quantity(’elevation’, filename=’elevation_file.pts, verbose=True)

Add buildings from file
building_polygons, building_heights = anuga.load_csv_as_building_polygons(building_file)

B = []
for key in building_polygons:

poly = building_polygons[key]
elev = building_heights[key]
B.append((poly, elev))

domain.add_quantity(’elevation’, Polygon_function(B, default=0.0))

<domain>.set_region(tag, quantity, X, location=’vertices’)
Module: abstract_2d_finite_volumes.domain
(see also abstract_2d_finite_volumes.quantity.set_values)

This function is used to assign values to individual quantities given a regional tag. It is similar to set_-
quantity().

For example, if in the mesh-generator a regional tag of ’ditch’ was used, set_region() can be used to set
elevation of this region to -10m. X is the constant or function to be applied to the quantity, over the tagged
region. location describes how the values will be applied. Options are ’vertices’ (the default), ’edges’,
’unique vertices’, and ’centroids’.

This method can also be called with a list of region objects. This is useful for adding quantities in regions, and
having one quantity value based on another quantity. See abstract_2d_finite_volumes.region for
more details.

slump_tsunami(length, depth, slope, width=None, thickness=None, radius=None, dphi=0.48, x0=0.0,
y0=0.0, alpha=0.0, gravity=9.8, gamma=1.85, massco=1, dragco=1, frictionco=0, dx=None,
kappa=3.0, kappad=1.0, zsmall=0.01, scale=None, domain=None, verbose=False)

Module: shallow_water.smf

This function returns a callable object representing an initial water displacement generated by a submarine
sediment failure. These failures can take the form of a submarine slump or slide. In the case of a slide, use
slide_tsunami instead.

length is the length of the slide or slump.

depth is the water depth to the centre of the sediment mass.

slope is the bathymetric slope.

Other slump or slide parameters can be included if they are known.

50 Chapter 5. ANUGA Public Interface

<callable_object> = file_function(filename, domain=None, quantities=None, interpolation -
points=None, time thinning=1, time limit=None, verbose=False,
output centroids=False, use cache=False, boundary poly-
gon=None)

Module: abstract_2d_finite_volumes.util

Reads the time history of spatial data for specified interpolation points from a NetCDF file and returns a callable
object. Values returned from the <callable_object> are interpolated values based on the input file using
the underlying interpolation_function.

filename is the name of the input file. This would be either an SWW, TMS or STS file.

quantities is either the name of a single quantity to be interpolated or a list of such quantity names. In
the second case, the resulting function will return a tuple of values – one for each quantity. If the NetCDF
file uses names other than ’stage’, ’xmomentum’, and ’ymomentum’ the name(s) appearing in the file must be
explicitly stated using the quantities keyword. This is for example be the case if a ’tms’ file is used to specify
time dependent precipitation. In this case the keyword might be called ’rainfall’ both in the call to file function
and in the ’tms’ file.

interpolation_points is a list of absolute coordinates or a geospatial object for points at which values
are sought.

boundary_polygon is a list of coordinates specifying the vertices of the boundary. This must be the same
polygon as used when calling create_mesh_from_regions(). This argument can only be used when
reading boundary data from an STS format file.

output_centroids set to true to sample at the centre of the triangle containing the point. This may be
useful for debugging. (new in 1.2)

The model time stored within the file function can be accessed using the method <callable_-
object>.get_time()

The underlying algorithm used is as follows:
Given a time series (i.e. a series of values associated with different times), whose values are either just numbers,
a set of numbers defined at the vertices of a triangular mesh (such as those stored in SWW files) or a set of
numbers defined at a number of points on the boundary (such as those stored in STS files), Interpolation_-
function() is used to create a callable object that interpolates a value for an arbitrary time twithin the model
limits and possibly a point (x, y) within a mesh region.

The actual time series at which data is available is specified by means of an array time of monotonically
increasing times. The quantities containing the values to be interpolated are specified in an array – or dictionary
of arrays (used in conjunction with the optional argument quantity_names) – called quantities. The
optional arguments vertex_coordinates and triangles represent the spatial mesh associated with the
quantity arrays. If omitted the function must be created using an STS file or a TMS file.

Since, in practice, values need to be computed at specified points, the syntax allows the user to specify,
once and for all, a list interpolation_points of points at which values are required. In this case, the
function may be called using the form <callable_object>(t, id), where id is an index for the list
interpolation_points.

class <callable_object> = Interpolation_function(time, quantities, quantity names=None, ver-
tex coordinates=None, triangles=None, inter-
polation points=None, time thinning=1, ver-
bose=False, gauge neighbour id=None)

Module: fit_interpolate.interpolate

Given a time series (i.e. a series of values associated with different times) whose values are either just num-
bers or a set of numbers defined at the vertices of a triangular mesh (such as those stored in SWW files),
Interpolation_function is used to create a callable object that interpolates a value for an arbitrary time
t within the model limits and possibly a point (x, y) within a mesh region.

The actual time series at which data is available is specified by means of an array time of monotonically
increasing times. The quantities containing the values to be interpolated are specified in an array – or dictionary

5.5. Initial Conditions 51

of arrays (used in conjunction with the optional argument quantity_names) – called quantities. The
optional arguments vertex_coordinates and triangles represent the spatial mesh associated with the
quantity arrays. If omitted the function created by Interpolation_function will be a function of t only.

Since, in practice, values need to be computed at specified points, the syntax allows the user to specify, once
and for all, a list interpolation_points of points at which values are required. In this case, the function
may be called using the form f(t, id), where id is an index for the list interpolation_points.

5.6 Boundary Conditions

ANUGA provides a large number of predefined boundary conditions, represented by objects such as Reflective_-
boundary(domain) and Dirichlet_boundary([0.2, 0.0, 0.0]), described in the examples in Chap-
ter 2. Alternatively, you may prefer to ”roll your own”, following the method explained in Section 5.6.2.

These boundary objects may be used with the function set_boundary described below to assign boundary condi-
tions according to the tags used to label boundary segments.

<domain>.set_boundary(boundary map)
Module: abstract_2d_finite_volumes.domain

This function allows you to assign a boundary object (corresponding to a pre-defined or user-specified boundary
condition) to every boundary segment that has been assigned a particular tag.

boundary_map is a dictionary of boundary objects keyed by symbolic tags.

<domain>.get_boundary_tags()
Module: abstract_2d_finite_volumes.domain

Returns a list of the available boundary tags.

5.6.1 Predefined boundary conditions

class Reflective_boundary(domain=None)
Module: shallow_water

Reflective boundary returns same conserved quantities as those present in the neighbouring volume but reflected.

This class is specific to the shallow water equation as it works with the momentum quantities assumed to be the
second and third conserved quantities.

class Transmissive_boundary(domain=None)
Module: abstract_2d_finite_volumes.generic_boundary_conditions

A transmissive boundary returns the same conserved quantities as those present in the neighbouring volume.

The underlying domain must be specified when the boundary is instantiated.

class Dirichlet_boundary(conserved quantities=None)
Module: abstract_2d_finite_volumes.generic_boundary_conditions

A Dirichlet boundary returns constant values for each of conserved quantities. In the example of
Dirichlet_boundary([0.2, 0.0, 0.0]), the stage value at the boundary is 0.2 and the
xmomentum and ymomentum at the boundary are set to 0.0. The list must contain a value for each conserved
quantity.

class Time_boundary(domain=None, function=None, default boundary=None, verbose=False)
Module: abstract_2d_finite_volumes.generic_boundary_conditions

A time-dependent boundary returns values for the conserved quantities as a function of time function(t).
The user must specify the domain to get access to the model time.

Optional argument default_boundary can be used to specify another boundary object to be used in case
model time exceeds the time available in the file used by File_boundary. The default_boundary could

52 Chapter 5. ANUGA Public Interface

be a simple Dirichlet condition or even another Time_boundary typically using data pertaining to another
time interval.

class File_boundary(filename, domain, time thinning=1, time limit=None, boundary polygon=None, default -
boundary=None, use cache=False, verbose=False)

Module: abstract_2d_finite_volumes.generic_boundary_conditions

This method may be used if the user wishes to apply a SWW file, STS file or a time series file (TMS) to a
boundary segment or segments. The boundary values are obtained from a file and interpolated to the appropriate
segments for each conserved quantity.

Optional argument default_boundary can be used to specify another boundary object to be used in case
model time exceeds the time available in the file used by File_boundary. The default_boundary could
be a simple Dirichlet condition or even another File_boundary typically using data pertaining to another
time interval.

class Field_boundary(filename, domain, mean stage=0.0, time thinning=1, time limit=None, boundary poly-
gon=None, default boundary=None, use cache=False, verbose=False)

Module: shallow_water.shallow_water_domain

This method works in the same way as File_boundary except that it allows for the value of stage to be offset
by a constant specified in the keyword argument mean_stage.

This functionality allows for models to be run for a range of tides using the same boundary information (from
STS, SWW or TMS files). The tidal value for each run would then be specified in the keyword argument
mean_stage. If mean_stage = 0.0, Field_boundary and File_boundary behave identically.

Note that if the optional argument default_boundary is specified its stage value will be adjusted by
mean_stage just like the values obtained from the file.

See File_boundary for further details.

class Transmissive_momentum_set_stage_boundary(domain=None, function=None)
Module: shallow_water.shallow_water_domain

This boundary returns the same momentum conserved quantities as those present in its neighbour volume but
sets stage as in a Time_boundary. The underlying domain must be specified when boundary is instantiated.

This type of boundary is useful when stage is known at the boundary as a function of time, but momenta (or
speeds) aren’t.

This class is specific to the shallow water equation as it works with the momentum quantities assumed to be the
second and third conserved quantities.

In some circumstances, this boundary condition may cause numerical instabilities for similar reasons as what
has been observed with the simple fully transmissive boundary condition (see Page 52). This could for example
be the case if a planar wave is reflected out through this boundary.

class Transmissive_stage_zero_momentum_boundary(domain=None)
Module: shallow_water

This boundary returns same stage conserved quantities as those present in its neighbour volume but sets mo-
mentum to zero. The underlying domain must be specified when boundary is instantiated

This type of boundary is useful when stage is known at the boundary as a function of time, but momentum
should be set to zero. This is for example the case where a boundary is needed in the ocean on the two sides
perpendicular to the coast to maintain the wave height of the incoming wave.

This class is specific to the shallow water equation as it works with the momentum quantities assumed to be the
second and third conserved quantities.

This boundary condition should not cause the numerical instabilities seen with the transmissive momentum
boundary conditions (see Page 52 and Page 53).

class Dirichlet_discharge_boundary(domain=None, stage0=None, wh0=None)
Module: shallow_water.shallow_water_domain

5.6. Boundary Conditions 53

stage0 sets the stage.

wh0 sets momentum in the inward normal direction.

5.6.2 User-defined boundary conditions

All boundary classes must inherit from the generic boundary class Boundary and have a method called
evaluate() which must take as inputs self, vol_id and edge_id where self refers to the object itself
and vol_id and edge_id are integers referring to particular edges. The method must return a list of three floating
point numbers representing values for stage, xmomentum and ymomentum, respectively.

The constructor of a particular boundary class may be used to specify particular values or flags to be used by the
evaluate() method. Please refer to the source code for the existing boundary conditions for examples of how to
implement boundary conditions.

5.7 Forcing Terms

ANUGA provides a number of predefined forcing functions to be used with simulations. Gravity and friction are
always calculated using the elevation and friction quantities, but the user may additionally add forcing terms to the list
domain.forcing_terms and have them affect the model.

Currently, predefined forcing terms are:

class General_forcing(domain, quantity name, rate=0.0, center=None, radius=None, polygon=None, default -
rate=None, verbose=False)

Module: shallow_water.shallow_water_domain

This is a general class to modify any quantity according to a given rate of change. Other specific forcing terms
are based on this class but it can be used by itself as well (e.g. to modify momentum).

domain is the domain being evolved.

quantity_name is the name of the quantity that will be affected by this forcing term.

rate is the rate at which the quantity should change. This can be either a constant or a function of time. Positive
values indicate increases, negative values indicate decreases. The parameter rate can be None at initialisation
but must be specified before a forcing term is applied (i.e. simulation has started). The default value is 0.0 – i.e.
no forcing.

center and radius optionally restrict forcing to a circle with given center and radius.

polygon optionally restricts forcing to an area enclosed by the given polygon.

Note: specifying center, radius and polygon will cause an exception to be thrown. Moreover, if the
specified polygon or circle does not lie fully within the mesh boundary an Exception will be thrown.

Example:

P = [[x0, y0], [x1, y0], [x1, y1], [x0, y1]] # Square polygon

xmom = General_forcing(domain, ’xmomentum’, polygon=P)
ymom = General_forcing(domain, ’ymomentum’, polygon=P)

xmom.rate = f
ymom.rate = g

domain.forcing_terms.append(xmom)
domain.forcing_terms.append(ymom)

54 Chapter 5. ANUGA Public Interface

Here, f and g are assumed to be defined as functions of time providing a time dependent rate of change for
xmomentum and ymomentum respectively. P is assumed to be the polygon, specified as a list of points.

class Inflow(domain, rate=0.0, center=None, radius=None, polygon=None, default rate=None, verbose=False)
Module: shallow_water.shallow_water_domain

This is a general class for inflow and abstraction of water according to a given rate of change. This class will
always modify the stage quantity.

Inflow is based on the General_forcing class so the functionality is similar.

domain is the domain being evolved.

rate is the flow rate (m3/s) at which the quantity should change. This can be either a constant or a function of
time. Positive values indicate inflow, negative values indicate outflow. Note: The specified flow will be divided
by the area of the inflow region and then applied to update the stage quantity.

center and radius optionally restrict forcing to a circle with given center and radius.

polygon optionally restricts forcing to an area enclosed by the given polygon.

Example:

hydrograph = Inflow(center=(320, 300), radius=10,
rate=file_function(’QPMF_Rot_Sub13.tms’))

domain.forcing_terms.append(hydrograph)

Here, ’QPMF_Rot_Sub13.tms’ is assumed to be a NetCDF file in the TMS format defining a timeseries for
a hydrograph.

class Rainfall(domain, rate=0.0, center=None, radius=None, polygon=None, default rate=None, ver-
bose=False)

Module: shallow_water.shallow_water_domain

This is a general class for implementing rainfall over the domain, possibly restricted to a given circle or polygon.
This class will always modify the stage quantity.

Rainfall is based on the General_forcing class so the functionality is similar.

domain is the domain being evolved.

rate is the total rain rate over the specified domain. Note: Raingauge Data needs to reflect the time step. For
example, if rain gauge is mm read every dt seconds, then the input here is as mm/dt so 10 mm in 5 minutes
becomes 10/(5x60) = 0.0333mm/s. This parameter can be either a constant or a function of time. Positive values
indicate rain being added (or be used for general infiltration), negative values indicate outflow at the specified
rate (presumably this could model evaporation or abstraction).

center and radius optionally restrict forcing to a circle with given center and radius.

polygon optionally restricts forcing to an area enclosed by the given polygon.

Example:

catchmentrainfall = Rainfall(rate=file_function(’Q100_2hr_Rain.tms’))
domain.forcing_terms.append(catchmentrainfall)

Here, ’Q100_2hr_Rain.tms’ is assumed to be a NetCDF file in the TMS format defining a timeseries for
the rainfall.

class Culvert_flow(domain, culvert description filename=None, culvert routine=None, end point0=None,
end point1=None, enquiry point0=None, enquiry point1=None, type=’box’, width=None,
height=None, length=None, number of barrels=1, trigger depth=0.01, manning=None,
sum loss=None, use velocity head=False, use momentum jet=False, label=None, de-
scription=None, update interval=None, log file=False, discharge hydrograph=False, ver-
bose=False)

Module: culvert_flows.culvert_class

5.7. Forcing Terms 55

This is a general class for implementing flow through a culvert. This class modifies the quantities stage,
xmomentum and ymomentum in areas at both ends of the culvert.

The Culvert_flow forcing term uses Inflow and General_forcing to update the quantities. The flow
direction is determined on-the-fly so openings are referenced simple as opening0 and opening1 with either being
able to take the role as Inflow or Outflow.

The Culvert_flow class takes as input:

•domain: a reference to the domain being evolved

•culvert_description_filename:

•culvert_routine:

•end_point0: Coordinates of one opening

•end_point1: Coordinates of other opening

•enquiry_point0:

•enquiry_point1:

•type: (default is ’box’)

•width:

•height:

•length:

•number_of_barrels: Number of identical pipes in the culvert (default is 1)

•trigger_depth: (default is 0.01)

•manning: Mannings Roughness for Culvert

•sum_loss:

•use_velocity_head:

•use_momentum_jet:

•label: Short text naming the culvert

•description: Text describing the culvert

•update_interval:

•log_file:

•discharge_hydrograph:

The user can specify different culvert routines. However, ANUGA currently provides only one, namely the
boyd_generalised_culvert_model as used in the example below:

56 Chapter 5. ANUGA Public Interface

from anuga.culvert_flows.culvert_class import Culvert_flow
from anuga.culvert_flows.culvert_routines import boyd_generalised_culvert_model

culvert1 = Culvert_flow(domain,
label=’Culvert No. 1’,
description=’This culvert is a test unit 1.2m Wide by 0.75m High’,
end_point0=[9.0, 2.5],
end_point1=[13.0, 2.5],
width=1.20,
height=0.75,
culvert_routine=boyd_generalised_culvert_model,
number_of_barrels=1,
verbose=True)

culvert2 = Culvert_flow(domain,
label=’Culvert No. 2’,
description=’This culvert is a circular test with d=1.2m’,
end_point0=[9.0, 1.5],
end_point1=[30.0, 3.5],
diameter=1.20,
invert_level0=7,
culvert_routine=boyd_generalised_culvert_model,
number_of_barrels=1,
verbose=True)

domain.forcing_terms.append(culvert1)
domain.forcing_terms.append(culvert2)

5.8 Evolution

<domain>.evolve(yieldstep=None, finaltime=None, duration=None, skip initial step=False)
Module: abstract_2d_finite_volumes.domain

This method is invoked once all the preliminaries have been completed, and causes the model to progress
through successive steps in its evolution, storing results and outputting statistics whenever a user-specified period
yieldstep is completed. Generally during this period the model will evolve through several steps internally
as the method forces the water speed to be calculated on successive new cells.

yieldstep is the interval in seconds between yields where results are stored, statistics written and the domain
is inspected or possibly modified. If omitted an internal predefined yieldstep is used. Internally, smaller
timesteps may be taken.

duration is the duration of the simulation in seconds.

finaltime is the time in seconds where simulation should end. This is currently relative time, so it’s the same
as duration. If both duration and finaltime are given an exception is thrown.

skip_initial_step is a boolean flag that decides whether the first yield step is skipped or not. This is
useful for example to avoid duplicate steps when multiple evolve processes are dove tailed.

The code specified by the user in the block following the evolve statement is only executed once every
yieldstep even though ANUGA typically will take many more internal steps behind the scenes.

You can include evolve in a statement of the type:

for t in domain.evolve(yieldstep, finaltime):
<Do something with domain and t>

5.8. Evolution 57

5.8.1 Diagnostics

<domain>.statistics()
Module: abstract_2d_finite_volumes.domain

Outputs statistics about the mesh within the Domain.

<domain>.timestepping_statistics(track speeds=False, triangle id=None)
Module: abstract_2d_finite_volumes.domain

Returns a string of the following type for each timestep:
Time = 0.9000, delta t in [0.00598964, 0.01177388], steps=12 (12)

Here the numbers in steps=12 (12) indicate the number of steps taken and the number of first-order steps,
respectively.

The optional keyword argument track_speeds will generate a histogram of speeds generated by each trian-
gle if set to True. The speeds relate to the size of the timesteps used by ANUGA and this diagnostics may help
pinpoint problem areas where excessive speeds are generated.

The optional keyword argument triangle_id can be used to specify a particular triangle rather than the one
with the largest speed.

<domain>.boundary_statistics(quantities=None, tags=None)
Module: abstract_2d_finite_volumes.domain

Generates output about boundary forcing at each timestep.

quantities names the quantities to be reported – may be None, a string or a list of strings.

tags names the tags to be reported – may be either None, a string or a list of strings.

When quantities = ’stage’ and tags = [’top’, ’bottom’] will return a string like:

Boundary values at time 0.5000:
top:

stage in [-0.25821218, -0.02499998]
bottom:

stage in [-0.27098821, -0.02499974]

Q = <domain>.get_quantity(name, location=’vertices’, indices=None)
Module: abstract_2d_finite_volumes.domain

This function returns a Quantity object Q. Access to its values should be done through Q.get_values()
documented on Page 59.

name is the name of the quantity to retrieve.

location is

indices is

<domain>.set_quantities_to_be_monitored(quantity, polygon=None, time interval=None)
Module: abstract_2d_finite_volumes.domain

Selects quantities and derived quantities for which extrema attained at internal timesteps will be collected.

quantity specifies the quantity or quantities to be monitored and must be either:

•the name of a quantity or derived quantity such as ’stage-elevation’,
•a list of quantity names, or
•None.

polygon can be used to monitor only triangles inside the polygon. Otherwise all triangles will be included.

time_intervalwill restrict monitoring to time steps in the interval. Otherwise all timesteps will be included.

Information can be tracked in the evolve loop by printing quantity_statistics and collected data will
be stored in the SWW file.

58 Chapter 5. ANUGA Public Interface

<domain>.quantity_statistics(precision=’%.4f’)
Module: abstract_2d_finite_volumes.domain

Reports on extrema attained by selected quantities.

Returns a string of the following type for each timestep:

Monitored quantities at time 1.0000:
stage-elevation:

values since time = 0.00 in [0.00000000, 0.30000000]
minimum attained at time = 0.00000000, location = (0.16666667, 0.33333333)
maximum attained at time = 0.00000000, location = (0.83333333, 0.16666667)

ymomentum:
values since time = 0.00 in [0.00000000, 0.06241221]
minimum attained at time = 0.00000000, location = (0.33333333, 0.16666667)
maximum attained at time = 0.22472667, location = (0.83333333, 0.66666667)

xmomentum:
values since time = 0.00 in [-0.06062178, 0.47886313]
minimum attained at time = 0.00000000, location = (0.16666667, 0.33333333)
maximum attained at time = 0.35103646, location = (0.83333333, 0.16666667)

The quantities (and derived quantities) listed here must be selected at model initialisation time using the method
domain.set_quantities_to_be_monitored().

The optional keyword argument precision=’%.4f’ will determine the precision used for floating point
values in the output. This diagnostics helps track extrema attained by the selected quantities at every internal
timestep.

These values are also stored in the SWW file for post-processing.

<quantity>.get_values(interpolation points=None, location=’vertices’, indices=None, use cache=False,
verbose=False)

Module: abstract_2d_finite_volumes.quantity

Extract values for quantity as a numeric array.

interpolation_points is a list of (x, y) coordinates where the value is sought (using interpolation). If
interpolation_points is given, values for location and indices are ignored. Assume either an
absolute UTM coordinates or geospatial data object.

location specifies where values are to be stored. Permissible options are ’vertices’, ’edges’, ’centroids’ or
’unique vertices’.

The returned values will have the leading dimension equal to length of the indices list or N (all values) if
indices is None.

If location is ’centroids’ the dimension of returned values will be a list or a numeric array of length N, N
being the number of elements.

If location is ’vertices’ or ’edges’ the dimension of returned values will be of dimension Nx3.

If location is ’unique vertices’ the average value at each vertex will be returned and the dimension of returned
values will be a 1d array of length ”number of vertices”

indices is the set of element ids that the operation applies to.

The values will be stored in elements following their internal ordering.

<quantity>.set_values(numeric=None, quantity=None, function=None, geospatial data=None, file-
name=None, attribute name=None, alpha=None, location=’vertices’, poly-
gon=None, indices=None, smooth=False, verbose=False, use cache=False)

Module: abstract_2d_finite_volumes.quantity

Assign values to a quantity object.

5.8. Evolution 59

This method works the same way as set_quantity() except that it doesn’t take a quantity name as the
first argument since it is applied directly to the quantity. Use set_values is used to assign values to a new
quantity that has been created but which is not part of the domain’s predefined quantities.

location is ??

indices is ??

The method set_values() is always called by set_quantity() behind the scenes.

<quantity>.get_integral()
Module: abstract_2d_finite_volumes.quantity

Return the computed integral over the entire domain for the quantity.

<quantity>.get_maximum_value(indices=None)
Module: abstract_2d_finite_volumes.quantity

Return the maximum value of a quantity (on centroids).

indices is the optional set of element ids that the operation applies to.

We do not seek the maximum at vertices as each vertex can have multiple values – one for each triangle sharing
it.

<quantity>.get_maximum_location(indices=None)
Module: abstract_2d_finite_volumes.quantity

Return the location of the maximum value of a quantity (on centroids).

indices is the optional set of element ids that the operation applies to.

We do not seek the maximum at vertices as each vertex can have multiple values – one for each triangle sharing
it.

If there are multiple cells with the same maximum value, the first cell encountered in the triangle array is
returned.

<domain>.get_wet_elements(indices=None)
Module: shallow_water.shallow_water_domain

Returns the indices for elements where h > minimum allowed height

indices is the optional set of element ids that the operation applies to.

<domain>.get_maximum_inundation_elevation(indices=None)
Module: shallow_water.shallow_water_domain

Return highest elevation where h > 0.

indices is the optional set of element ids that the operation applies to.

Example to find maximum runup elevation:

z = domain.get_maximum_inundation_elevation()

<domain>.get_maximum_inundation_location(indices=None)
Module: shallow_water.shallow_water_domain

Return location (x,y) of highest elevation where h > 0.

indices is the optional set of element ids that the operation applies to.

Example to find maximum runup location:

x, y = domain.get_maximum_inundation_location()

60 Chapter 5. ANUGA Public Interface

5.9 Queries of SWW model output files

After a model has been run, it is often useful to extract various information from the SWW output file (see Section
6.1.3). This is typically more convenient than using the diagnostics described in Section 5.8.1 which rely on the model
running – something that can be very time consuming. The SWW files are easy and quick to read and offer information
about the model results such as runup heights, time histories of selected quantities, flow through cross sections and
much more.

elevation = get_maximum_inundation_elevation(filename, polygon=None, time interval=None,
verbose=False)

Module: shallow_water.data_manager

Return the highest elevation where depth is positive (h > 0).

filename is the path to a NetCDF SWW file containing ANUGA model output.

polygon restricts the query to the points that lie within the polygon.

time_interval restricts the query to within the time interval.

Example to find maximum runup elevation:

max_runup = get_maximum_inundation_elevation(filename)

If no inundation is found (within the polygon and time_interval, if specified) the return value is None.
This indicates ”No Runup” or ”Everything is dry”.

(x, y) = get_maximum_inundation_location(filename, polygon=None, time interval=None, ver-
bose=False)

Module: shallow_water.data_manager

Return location (x,y) of the highest elevation where depth is positive (h > 0).

filename is the path to a NetCDF SWW file containing ANUGA model output.

polygon restricts the query to the points that lie within the polygon.

time_interval restricts the query to within the time interval.

Example to find maximum runup location:

max_runup_location = get_maximum_inundation_location(filename)

If no inundation is found (within the polygon and time_interval, if specified) the return value is None.
This indicates ”No Runup” or ”Everything is dry”. is None. This indicates ”No Runup” or ”Everything is dry”.

sww2timeseries(swwfiles, gauge filename, production dirs, report=None, reportname=None, plot quan-
tity=None, generate fig=False, surface=None, time min=None, time max=None, output -
centroids=False, time thinning=1, time unit=None, title on=None, use cache=False, ver-
bose=False)

Module: abstract_2d_finite_volumes.util

Read a set of SWW files and plot the time series for the prescribed quantities at defined gauge locations and
prescribed time range.

swwfiles is a dictionary of SWW files with keys of label_id.

gauge_filename is the path to a file containing gauge data.

THIS NEEDS MORE WORK. WORK ON FUNCTION DOC STRING, IF NOTHING ELSE!

(time, Q) = get_flow_through_cross_section(filename, polyline, verbose=False)
Module: shallow_water.data_manager

Obtain flow (m3/s) perpendicular to specified cross section.

filename is the path to the SWW file.

5.9. Queries of SWW model output files 61

output_centroids set to true to sample at the centre of the triangle containing the point. This may be
useful for debugging. (new in 1.2)

polyline is the representation of the desired cross section – it may contain multiple sections allowing for
complex shapes. Assumes absolute UTM coordinates.

Returns a tuple time, Q where:

time is all the stored times in the SWW file.

Q is a hydrograph of total flow across the given segments for all stored times.

The normal flow is computed for each triangle intersected by the polyline and added up. If multiple segments
at different angles are specified the normal flows may partially cancel each other.

Example to find flow through cross section:

cross_section = [[x, 0], [x, width]]
time, Q = get_flow_through_cross_section(filename, cross_section)

5.10 Other

quantity = <domain>.create_quantity_from_expression(string)
Module: abstract_2d_finite_volumes.domain

Create a new quantity from other quantities in the domain using an arbitrary expression.

string is a string containing an arbitrary quantity expression.

Returns the new Quantity object.

Handy for creating derived quantities on-the-fly:

Depth = domain.create_quantity_from_expression(’stage-elevation’)

exp = ’(xmomentum*xmomentum + ymomentum*ymomentum)**0.5’
Absolute_momentum = domain.create_quantity_from_expression(exp)

62 Chapter 5. ANUGA Public Interface

CHAPTER

SIX

ANUGA System Architecture

6.1 File Formats

ANUGA makes use of a number of different file formats. The following table lists all these formats, which are
described in more detail in the paragraphs below.

Extension Description
.sww NetCDF format for storing model output with mesh information f(t,x,y)
.sts NetCDF format for storing model ouput f(t,x,y) without mesh information
.tms NetCDF format for storing time series f(t)
.csv/.txt ASCII format for storing arbitrary points and associated attributes
.pts NetCDF format for storing arbitrary points and associated attributes
.asc ASCII format of regular DEMs as output from ArcView
.prj Associated ArcView file giving more metadata for .asc format
.ers ERMapper header format of regular DEMs for ArcView
.dem NetCDF representation of regular DEM data
.tsh ASCII format for storing meshes and associated boundary and region info
.msh NetCDF format for storing meshes and associated boundary and region info
.nc Native ferret NetCDF format
.geo Houdinis ASCII geometry format (?)

The above table shows the file extensions used to identify the formats of files. However, typically, in referring to a
format we capitalise the extension and omit the initial full stop – thus, we refer to ’SWW files’ or ’PRJ files’, not ’sww
files’ or ’.prj files’.

A typical dataflow can be described as follows:

SOMETHING MISSING HERE!?

6.1.1 Manually Created Files

ASC, PRJ Digital elevation models (gridded)
NC Model outputs for use as boundary conditions (e.g. from MOST)

63

6.1.2 Automatically Created Files

ASC, PRJ → DEM → PTS Convert DEMs to native .pts file
NC → SWW Convert MOST boundary files to boundary .sww
PTS + TSH → TSH with elevation Least squares fit
TSH → SWW Convert TSH to .sww-viewable using anuga_viewer
TSH + Boundary SWW → SWW Simulation using ANUGA
Polygonal mesh outline → TSH or MSH

6.1.3 SWW, STS and TMS Formats

The SWW, STS and TMS formats are all NetCDF formats and are of key importance for ANUGA .

An SWW file is used for storing ANUGA output and therefore pertains to a set of points and a set of times at which a
model is evaluated. It contains, in addition to dimension information, the following variables:

• x and y: coordinates of the points, represented as numeric arrays

• elevation: a numeric array storing bed-elevations

• volumes: a list specifying the points at the vertices of each of the triangles

• time: a numeric array containing times for model evaluation

The contents of an SWW file may be viewed using the anuga viewer anuga_viewer, which creates an on-screen
visualisation. See section A.2 (page 78) in Appendix A for more on anuga_viewer.

Alternatively, there are tools, such as ncdump, that allow you to convert a NetCDF file into a readable format such
as the Class Definition Language (CDL). The following is an excerpt from a CDL representation of the output file
‘runup.sww’ generated from running the simple example ‘runup.py’ of Chapter 4:

netcdf bedslope {
dimensions:

number_of_volumes = 200 ;
number_of_vertices = 3 ;
number_of_points = 121 ;
number_of_timesteps = UNLIMITED ; // (41 currently)

variables:
float x(number_of_points) ;
float y(number_of_points) ;
float elevation(number_of_points) ;
float z(number_of_points) ;
int volumes(number_of_volumes, number_of_vertices) ;
float time(number_of_timesteps) ;
float stage(number_of_timesteps, number_of_points) ;
float xmomentum(number_of_timesteps, number_of_points) ;
float ymomentum(number_of_timesteps, number_of_points) ;

// global attributes:
:institution = "Geoscience Australia" ;
:description = "Output from pyvolution suitable for plotting" ;
:smoothing = "Yes" ;
:order = 1 ;
:starttime = 0 ;
:xllcorner = 0. ;
:yllcorner = 0. ;

64 Chapter 6. ANUGA System Architecture

:zone = 56 ;
:false_easting = 500000 ;
:false_northing = 10000000 ;
:datum = "wgs84" ;
:projection = "UTM" ;
:units = "m" ;

data:

x = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4,
0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6,
0.6, 0.6, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.8,
0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9,
0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ;

y = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ;

elevation = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.05, -0.05, -0.05, -0.05,
-0.05, -0.05, -0.05, -0.05, -0.05, -0.05, -0.05, -0.1, -0.1, -0.1, -0.1,
-0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.15, -0.15, -0.15, -0.15,
-0.15, -0.15, -0.15, -0.15, -0.15, -0.15, -0.15, -0.2, -0.2, -0.2, -0.2,
-0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.25, -0.25, -0.25, -0.25,
-0.25, -0.25, -0.25, -0.25, -0.25, -0.25, -0.25, -0.3, -0.3, -0.3, -0.3,
-0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.35, -0.35, -0.35, -0.35,
-0.35, -0.35, -0.35, -0.35, -0.35, -0.35, -0.35, -0.4, -0.4, -0.4, -0.4,
-0.4, -0.4, -0.4, -0.4, -0.4, -0.4, -0.4, -0.45, -0.45, -0.45, -0.45,
-0.45, -0.45, -0.45, -0.45, -0.45, -0.45, -0.45, -0.5, -0.5, -0.5, -0.5,
-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5 ;

z = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.05, -0.05, -0.05, -0.05, -0.05,
-0.05, -0.05, -0.05, -0.05, -0.05, -0.05, -0.1, -0.1, -0.1, -0.1, -0.1,
-0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.15, -0.15, -0.15, -0.15, -0.15,
-0.15, -0.15, -0.15, -0.15, -0.15, -0.15, -0.2, -0.2, -0.2, -0.2, -0.2,
-0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.25, -0.25, -0.25, -0.25, -0.25,
-0.25, -0.25, -0.25, -0.25, -0.25, -0.25, -0.3, -0.3, -0.3, -0.3, -0.3,
-0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.35, -0.35, -0.35, -0.35, -0.35,
-0.35, -0.35, -0.35, -0.35, -0.35, -0.35, -0.4, -0.4, -0.4, -0.4, -0.4,
-0.4, -0.4, -0.4, -0.4, -0.4, -0.4, -0.45, -0.45, -0.45, -0.45, -0.45,
-0.45, -0.45, -0.45, -0.45, -0.45, -0.45, -0.5, -0.5, -0.5, -0.5, -0.5,
-0.5, -0.5, -0.5, -0.5, -0.5, -0.5 ;

volumes =
11, 12, 0,
1, 0, 12,
12, 13, 1,
2, 1, 13,
13, 14, 2,
3, 2, 14,
14, 15, 3,
4, 3, 15,

6.1. File Formats 65

...,
109, 108, 120 ;

time = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,
2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4 ;

stage =
0.025, 0.02777778, 0.02777778, 0.02777778, 0.02777778, 0.02777778,

0.02777778, 0.02777778, 0.02777778, 0.02777778, 0.03333334, -0.01111111,
5.782412e-019, 5.782412e-019, 5.782412e-019, 5.782412e-019,
5.782412e-019, 5.782412e-019, 5.782412e-019, 5.782412e-019,
...
-0.1654055, -0.1558442, -0.1504084 ;

xmomentum =
_, _, _, _, _, ,... _, _ ;

ymomentum =
_, _, _, _, _, ,... _, _ ;

}

The SWW format is used not only for output but also serves as input for functions such as file_boundary and
file_function, described in Chapter 5.

An STS file is used for storing a set of points and associated times. It contains, in addition to dimension information,
the following variables:

• x and y: coordinates of the points, represented as numeric arrays

• permutation: Original indices of the points as specified by the optional ordering_file (see the function
urs2sts() in Section 6.1.9)

• elevation: a numeric array storing bed-elevations

• time: a numeric array containing times for model evaluation

The only difference between the STS format and the SWW format is the former does not contain a list specifying the
points at the vertices of each of the triangles (volumes). Consequently information (arrays) stored within an STS file
such as elevation can be accessed in exactly the same way as it would be extracted from an SWW file.

A TMS file is used to store time series data that is independent of position.

6.1.4 Mesh File Formats

A mesh file is a file that has a specific format suited to triangular meshes and their outlines. A mesh file can have one
of two formats: it can be either a TSH file, which is an ASCII file, or an MSH file, which is a NetCDF file. A mesh file
can be generated from the function create_mesh_from_regions() (see Section 5.3) and be used to initialise a
domain.

A mesh file can define the outline of the mesh – the vertices and line segments that enclose the region in which the
mesh is created – and the triangular mesh itself, which is specified by listing the triangles and their vertices, and the
segments, which are those sides of the triangles that are associated with boundary conditions.

In addition, a mesh file may contain ’holes’ and/or ’regions’. A hole represents an area where no mesh is to be created,
while a region is a labelled area used for defining properties of a mesh, such as friction values. A hole or region is
specified by a point and bounded by a number of segments that enclose that point.

A mesh file can also contain a georeference, which describes an offset to be applied to x and y values – e.g. to the
vertices.

66 Chapter 6. ANUGA System Architecture

6.1.5 Formats for Storing Arbitrary Points and Attributes

A CSV/TXT file is used to store data representing arbitrary numerical attributes associated with a set of points.

The format for an CSV/TXT file is:

first line: [column names]
other lines: [x value], [y value], [attributes]

for example:

x, y, elevation, friction
0.6, 0.7, 4.9, 0.3
1.9, 2.8, 5.0, 0.3
2.7, 2.4, 5.2, 0.3

The delimiter is a comma. The first two columns are assumed to be x and y coordinates.

A PTS file is a NetCDF representation of the data held in an points CSV file. If the data is associated with a set of N
points, then the data is stored using an N × 2 numeric array of float variables for the points and an N × 1 numeric
array for each attribute.

6.1.6 ArcView Formats

Files of the three formats ASC, PRJ and ERS are all associated with data from ArcView.

An ASC file is an ASCII representation of DEM output from ArcView. It contains a header with the following format:

ncols 753
nrows 766
xllcorner 314036.58727982
yllcorner 6224951.2960092
cellsize 100
NODATA_value -9999

The remainder of the file contains the elevation data for each grid point in the grid defined by the above information.

A PRJ file is an ArcView file used in conjunction with an ASC file to represent metadata for a DEM.

6.1.7 DEM Format

A DEM file in ANUGA is a NetCDF representation of regular DEM data.

6.1.8 Other Formats

6.1.9 Basic File Conversions

sww2dem((basename in, basename out=None, quantity=None, reduction=None, cellsize=10, number of decimal -
places=None, NODATA value=-9999, easting min=None, easting max=None, northing min=None, nor-
thing max=None, verbose=False, origin=None, datum=’WGS84’, format=’ers’, block size=None)

Module: shallow_water.data_manager

6.1. File Formats 67

Takes data from an SWW file basename_in and converts it to DEM format (ASC or ERS) of a desired grid
size cellsize in metres. The user can select how many decimal places the output data is represented with by
using number_of_decimal_places, with the default being 3.

The easting and northing values are used if the user wishes to determine the output within a specified rectan-
gular area. The reduction input refers to a function to reduce the quantities over all time step of the SWW
file, e.g. maximum, or an index referring to a time-step to extract a time-slice of data.

dem2pts(basename in, basename out=None, easting min=None, easting max=None, northing min=None, nor-
thing max=None, use cache=False, verbose=False)

Module: shallow_water.data_manager

Takes DEM data (a NetCDF file representation of data from a regular Digital Elevation Model) and converts it
to PTS format.

urs2sts(basename in, basename out=None, weights=None, verbose=False, origin=None,mean stage=0.0, zs-
cale=1.0, ordering filename=None)

Module: shallow_water.data_manager

Takes URS data (timeseries data in mux2 format) and converts it to STS format. The optional filename
ordering_filename specifies the permutation of indices of points to select along with their longitudes and
latitudes. This permutation will also be stored in the STS file. If absent, all points are taken and the permutation
will be trivial, i.e. 0, 1, . . . , N − 1, where N is the total number of points stored.

csv2building_polygons(file name, floor height=3)
Module: shallow_water.data_manager

Convert CSV files of the form:

easting,northing,id,floors
422664.22,870785.46,2,0
422672.48,870780.14,2,0
422668.17,870772.62,2,0
422660.35,870777.17,2,0
422664.22,870785.46,2,0
422661.30,871215.06,3,1
422667.50,871215.70,3,1
422668.30,871204.86,3,1
422662.21,871204.33,3,1
422661.30,871215.06,3,1

to a dictionary of polygons with id as key. The associated number of floors are converted to m above MSL
and returned as a separate dictionary also keyed by id.

Optional parameter floor_height is the height of each building story.

These can e.g. be converted to a Polygon_function for use with add_quantity as shown on page 50.

68 Chapter 6. ANUGA System Architecture

CHAPTER

SEVEN

ANUGA mathematical background

7.1 Introduction

This chapter outlines the mathematics underpinning ANUGA .

7.2 Model

The shallow water wave equations are a system of differential conservation equations which describe the flow of a thin
layer of fluid over terrain. The form of the equations are:

∂U

∂t
+

∂E

∂x
+

∂G

∂y
= S

where U =
[
h uh vh

]T
is the vector of conserved quantities; water depth h, x-momentum uh and y-momentum

vh. Other quantities entering the system are bed elevation z and stage (absolute water level) w, where the relation
w = z + h holds true at all times. The fluxes in the x and y directions, E and G are given by

E =

 uh
u2h+ gh2/2
uvh

 and G =

 vh
vuh
v2h+ gh2/2

and the source term (which includes gravity and friction) is given by

S =

 0
−gh(zx + Sfx)
−gh(zy + Sfy)

where Sf is the bed friction. The friction term is modelled using Manning’s resistance law

Sfx =
uη2

√
u2 + v2

h4/3
and Sfy =

vη2
√
u2 + v2

h4/3

in which η is the Manning resistance coefficient. The model does not currently include consideration of kinematic
viscosity or dispersion.

As demonstrated in our papers, [ZR1999, nielsen2005] these equations and their implementation in ANUGA provide
a reliable model of general flows associated with inundation such as dam breaks and tsunamis.

7.3 Finite Volume Method

We use a finite-volume method for solving the shallow water wave equations [ZR1999]. The study area is represented
by a mesh of triangular cells as in Figure 7.1 in which the conserved quantities of water depth h, and horizontal

69

momentum (uh, vh), in each volume are to be determined. The size of the triangles may be varied within the mesh to
allow greater resolution in regions of particular interest.

Figure 7.1: Triangular mesh used in our finite volume method. Conserved quantities h, uh and vh are associated with the centroid
of each triangular cell.

The equations constituting the finite-volume method are obtained by integrating the differential conservation equations
over each triangular cell of the mesh. Introducing some notation we use i to refer to the ith triangular cell Ti, and N (i)
to the set of indices referring to the cells neighbouring the ith cell. Then Ai is the area of the ith triangular cell and lij
is the length of the edge between the ith and jth cells.

By applying the divergence theorem we obtain for each volume an equation which describes the rate of change of the
average of the conserved quantities within each cell, in terms of the fluxes across the edges of the cells and the effect
of the source terms. In particular, rate equations associated with each cell have the form

dUi

dt
+

1

Ai

∑
j∈N (i)

Hij lij = Si

where

• Ui the vector of conserved quantities averaged over the ith cell,

• Si is the source term associated with the ith cell, and

• Hij is the outward normal flux of material across the ijth edge.

The flux Hij is evaluated using a numerical flux function H(·, ·; ·) which is consistent with the shallow water flux in
the sense that for all conservation vectors U and normal vectors n

H(U,U; n) = E(U)n1 +G(U)n2.

Then
Hij = H(Ui(mij),Uj(mij);nij)

where mij is the midpoint of the ijth edge and nij is the outward pointing normal, with respect to the ith cell, on the
ijth edge. The function Ui(x) for x ∈ Ti is obtained from the vector Uk of conserved average values for the ith and
neighbouring cells.

We use a second order reconstruction to produce a piece-wise linear function construction of the conserved quantities
for all x ∈ Ti for each cell (see Figure 7.2). This function is allowed to be discontinuous across the edges of the cells,
but the slope of this function is limited to avoid artificially introduced oscillations.

70 Chapter 7. ANUGA mathematical background

Godunov’s method (see [Toro1999]) involves calculating the numerical flux function H(·, ·; ·) by exactly solving the
corresponding one dimensional Riemann problem normal to the edge. We use the central-upwind scheme of [1] to
calculate an approximation of the flux across each edge.

Figure 7.2: From the values of the conserved quantities at the centroid of the cell and its neighbouring cells, a discontinuous
piecewise linear reconstruction of the conserved quantities is obtained.

In the computations presented in this paper we use an explicit Euler timestepping method with variable timestepping
adapted to the observed CFL condition:

∆t = min
k,i=[0,1,2]

min

(
rk
vk,i

,
rnk,i

vk,i

)
(7.1)

where rk is the radius of the k’th triangle and vk,i is the maximal velocity across edge joining triangle k and it’s i’th
neighbour, triangle nk,i, as calculated by the numerical flux function using the central upwind scheme of [1]. The
symbol rnk,i

denotes the radius of the i’th neighbour of triangle k. The radii are calculated as radii of the inscribed
circles of each triangle.

7.4 Flux limiting

The shallow water equations are solved numerically using a finite volume method on an unstructured triangular grid.
The upwind central scheme due to Kurganov and Petrova is used as an approximate Riemann solver for the computa-
tion of inviscid flux functions. This makes it possible to handle discontinuous solutions.

To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary
we employ a new flux limiter that ensures that unphysical fluxes are never encountered.

Let u and v be the velocity components in the x and y direction, w the absolute water level (stage) and z the bed
elevation. The latter are assumed to be relative to the same height datum. The conserved quantities tracked by
ANUGA are momentum in the x-direction (µ = uh), momentum in the y-direction (ν = vh) and depth (h = w − z).

The flux calculation requires access to the velocity vector (u, v) where each component is obtained as u = µ/h and
v = ν/h respectively. In the presence of very small water depths, these calculations become numerically unreliable
and will typically cause unphysical speeds.

We have employed a flux limiter which replaces the calculations above with the limited approximations.

û =
µ

h+ h0/h
, v̂ =

ν

h+ h0/h
, (7.2)

7.4. Flux limiting 71

where h0 is a regularisation parameter that controls the minimal magnitude of the denominator. Taking the limits we
have for û

lim
h→0

û = lim
h→0

µ

h+ h0/h
= 0

and
lim
h→∞

û = lim
h→∞

µ

h+ h0/h
=

µ

h
= u

with similar results for v̂.

The maximal value of û is attained when h+ h0/h is minimal or (by differentiating the denominator)

1− h0/h
2 = 0

or
h0 = h2

ANUGA has a global parameter H0 that controls the minimal depth which is considered in the various equations. This
parameter is typically set to 10−3. Setting

h0 = H2
0

provides a reasonable balance between accuracy and stability. In fact, setting h = H0 will scale the predicted speed
by a factor of 0.5: [

µ

h+ h0/h

]
h=H0

=

[
µ

H0 +H2
0/H0

]
=

µ

2H0
=

µ

2h
=

u

2

In general, for multiples of the minimal depth NH0 one obtains[
µ

h+ h0/h

]
h=NH0

=
µ

NH0 +H0/N
=

µ

h(1 + 1/N2)
(7.3)

which converges quadratically to the true value with the multiple N.

Although this equation can be used for any depth, we have restricted its use to depths less than 10 ∗H0 (or 1 cm) to
computational resources. According to Equation 7.3 this cutoff affects the calculated velocity by less than 1 %.

7.5 Slope limiting

A multidimensional slope-limiting technique is employed to achieve second-order spatial accuracy and to prevent
spurious oscillations. This is using the MinMod limiter and is documented elsewhere.

However close to the bed, the limiter must ensure that no negative depths occur. On the other hand, in deep water, the
bed topography should be ignored for the purpose of the limiter.

Let w, z, h be the stage, bed elevation and depth at the centroid and let wi, zi, hi be the stage, bed elevation and depth
at vertex i. Define the minimal depth across all vertices as hmin as

hmin = min
i

hi

Let w̃i be the stage obtained from a gradient limiter limiting on stage only. The corresponding depth is then defined as

h̃i = w̃i − zi

We would use this limiter in deep water which we will define (somewhat boldly) as

hmin ≥ ε

72 Chapter 7. ANUGA mathematical background

Similarly, let w̄i be the stage obtained from a gradient limiter limiting on depth respecting the bed slope. The corre-
sponding depth is defined as

h̄i = w̄i − zi

We introduce the concept of a balanced stage wi which is obtained as the linear combination

wi = αw̃i + (1− α)w̄i

or
wi = zi + αh̃i + (1− α)h̄i

where α ∈ [0, 1].

Since w̃i is obtained in ’deep’ water where the bedslope is ignored we have immediately that

α = 1 for hmin ≥ ε

If hmin < ε we want to use the ’shallow’ limiter just enough that no negative depths occur. Formally, we will require
that

αh̃i + (1− α)h̄i > ε,∀i

or
α(h̃i − h̄i) > ε− h̄i, ∀i (7.4)

There are two cases:

1. h̄i ≤ h̃i: The deep water (limited using stage) vertex is at least as far away from the bed than the shallow water
(limited using depth). In this case we won’t need any contribution from h̄i and can accept any α.

E.g. α = 1 reduces Equation 7.4 to
h̃i > ε

whereas α = 0 yields
h̄i > ε

all well and good.

2. h̄i > h̃i: In this case the the deep water vertex is closer to the bed than the shallow water vertex or even below
the bed. In this case we need to find an α that will ensure a positive depth. Rearranging Equation 7.4 and solving
for α one obtains the bound

α <
ε− h̄i

h̃i − h̄i

, ∀i

Ensuring Equation 7.4 holds true for all vertices one arrives at the definition

α = min
i

h̄i − ε

h̄i − h̃i

which will guarantee that no vertex ’cuts’ through the bed. Finally, should h̄i < ε and therefore α < 0, we suggest
setting α = 0 and similarly capping α at 1 just in case.

7.5. Slope limiting 73

74

CHAPTER

EIGHT

Basic ANUGA Assumptions

8.1 Time

Physical model time cannot be earlier than 1 Jan 1970 00:00:00. If one wished to recreate scenarios prior to that date
it must be done using some relative time (e.g. 0).

The ANUGA domain has an attribute starttime which is used in cases where the simulation should be started
later than the beginning of some input data such as those obtained from boundaries or forcing functions (hydrographs,
file boundary etc).

The domain.startime may be adjusted in file_boundary in the case the input data does not itself start until
a later time.

8.2 Spatial data

8.2.1 Projection

All spatial data relates to the WGS84 datum (or GDA94) and assumes a projection into UTM with false easting of
500000 and false northing of 1000000 on the southern hemisphere (0 on the northern hemisphere). All locations must
consequently be specified in Cartesian coordinates (eastings, northings) or (x,y) where the unit is metres. Alternative
projections can be used, but ANUGA does have the concept of a UTM zone that must be the same for all coordinates
in the model.

8.2.2 Internal coordinates

It is important to realise that for numerical precision ANUGA uses coordinates that are relative to the lower left node
of the rectangle containing the mesh (xmin, ymin). This origin is referred to internally as xllcorner, yllcorner
following the ESRI ASCII grid notation. The SWW file format also includes xllcorner, yllcorner and any
coordinate in the file should be adjusted by adding this origin. See Section 6.1.3.

Throughout the ANUGA interface, functions have optional boolean arguments absolute which controls
whether spatial data received is using the internal representation (absolute=False) or the user coordinate set
(absolute=True). See e.g. get_vertex_coordinates() on 48.

DEMs, meshes and boundary conditions can have different origins. However, the internal representation in ANUGA
will use the origin of the mesh.

75

8.2.3 Polygons

When generating a mesh it is assumed that polygons do not cross. Having polygons that cross can cause bad meshes
to be produced or the mesh generation itself may fail.

76 Chapter 8. Basic ANUGA Assumptions

APPENDIX

A

Supporting Tools

This section describes a number of supporting tools, supplied with ANUGA , that offer a variety of types of function-
ality and can enhance the basic capabilities of ANUGA .

A.1 caching

The cache function is used to provide supervised caching of function results. A Python function call of the form:

result = func(arg1, ..., argn)

can be replaced by:

from caching import cache
result = cache(func,(arg1, ..., argn))

which returns the same output but reuses cached results if the function has been computed previously in the same
context. result and the arguments can be simple types, tuples, list, dictionaries or objects, but not unhashable types
such as functions or open file objects. The function func may be a member function of an object or a module.

This type of caching is particularly useful for computationally intensive functions with few frequently used combina-
tions of input arguments. Note that if the inputs or output are very large caching may not save time because disc access
may dominate the execution time.

If the function definition changes after a result has been cached, this will be detected by examining the functions
bytecode and the function will be recomputed. However, caching will not detect changes in modules used by func.
In this case the cache must be cleared manually.

Options are set by means of the function set_option(key, value), where key is a key associated with a
Python dictionary options. This dictionary stores settings such as the name of the directory used, the maximum
number of cached files allowed, and so on.

The cache function allows the user also to specify a list of dependent files. If any of these have been changed, the
function is recomputed and the results stored again.

USAGE:

result = cache(func, args, kwargs, dependencies, cachedir, verbose,
compression, evaluate, test, return_filename)

77

A.2 anuga viewer

The output generated by ANUGA may be viewed by means of the visualisation tool anuga_viewer, which takes an
SWW file generated by ANUGA and creates a visual representation of the data. Examples may be seen in Figures 4.1
and 4.2. To view an SWW file with anuga_viewer in the Windows environment you have to run it in a command
line as in

anuga_viewer <swwfile>

or if a georeferenced tif file (or jpg cut to the same shape as the domain) is needed

anuga_viewer <swwfile> <tif file>

78 Appendix A. Supporting Tools

A.3 utilities/polygons

class <callable> = Polygon_function(regions, default=0.0, geo reference=None)
Module: utilities.polygon

Creates a callable object that returns one of a specified list of values when evaluated at a point (x, y), de-
pending on which polygon, from a specified list of polygons, the point belongs to.

regions is a list of pairs (P, v), where each P is a polygon and each v is either a constant value or a
function of coordinates x and y, specifying the return value for a point inside P.

default may be used to specify a value (or a function) for a point not lying inside any of the specified
polygons.

When a point lies in more than one polygon, the return value is taken to be the value for whichever of these
polygon appears later in the list.

geo_reference refers to the status of points that are passed into the function. Typically they will be relative
to some origin.

Typical usage may take the form:

set_quantity(’elevation’,
Polygon_function([(P1, v1), (P2, v2)],

default=v3,
geo_reference=domain.geo_reference))

<polygon> = read_polygon(filename, split=’,’)
Module: utilities.polygon

Reads the specified file and returns a polygon. Each line of the file must contain exactly two numbers, separated
by a delimiter, which are interpreted as coordinates of one vertex of the polygon.

filename is the path to the file to read.

split sets the delimiter character between the numbers on one line of the file. If not specified, the delimiter is
the ’,’ character.

populate_polygon(polygon, number of points, seed=None, exclude=None)
Module: utilities.polygon

Populates the interior of the specified polygon with the specified number of points, selected by means of a
uniform distribution function.

polygon is the polygon to populate.

number_of_points is the (optional) number of points.

seedis the optional seed for random number generator.

exclude is a list of polygons (inside main polygon) from where points should be excluded.

<point> = point_in_polygon(polygon, delta=1e-8)
Module: utilities.polygon

Returns a point inside the specified polygon and close to the edge. The distance between the returned point and
the nearest point of the polygon is less than

√
2 times the second argument delta, which is taken as 10−8 by

default.

<array> = inside_polygon(points, polygon, closed=True, verbose=False)
Module: utilities.polygon

Get a set of points that lie inside a given polygon.

points is the list of points to test.

polygon is the polygon to test the points against.

A.3. utilities/polygons 79

closed specifies if points on the polygon edge are considered to be inside or outside the polygon – True
means they are inside.

Returns a numeric array comprising the indices of the points in the list that lie inside the polygon. If none of the
points are inside, returns zeros((0,), ’l’) (ie, an empty numeric array).

Compare with outside_polygon(), page 80.

<array> = outside_polygon(points, polygon, closed=True, verbose=False)
Module: utilities.polygon

Get a set of points that lie outside a given polygon.

points is the list of points to test.

polygon is the polygon to test the points against.

closed specifies if points on the polygon edge are considered to be outside or inside the polygon – True
means they are outside.

Returns a numeric array comprising the indices of the points in the list that lie outside the polygon. If none of
the points are outside, returns zeros((0,), ’l’) (ie, an empty numeric array).

Compare with inside_polygon(), page 79.

<boolean> = is_inside_polygon(point, polygon, closed=True, verbose=False)
Module: utilities.polygon

Determines if a single point is inside a polygon.

point is the point to test.

polygon is the polygon to test point against.

closed is a flag that forces the function to consider a point on the polygon edge to be inside or outside – if
True a point on the edge is considered inside the polygon.

Returns True if point is inside polygon.

Compare with inside_polygon(), page 79.

<boolean> = is_outside_polygon(point, polygon, closed=True, verbose=False,)
Module: utilities.polygon

Determines if a single point is outside a polygon.

point is the point to test.

polygon is the polygon to test point against.

closed is a flag that forces the function to consider a point on the polygon edge to be outside or inside – if
True a point on the edge is considered inside the polygon.

Compare with outside_polygon(), page 80.

<boolean> = point_on_line(point, line, rtol=1.0e-5, atol=1.0e-8)
Module: utilities.polygon

Determine if a point is on a line to some tolerance. The line is considered to extend past its end-points.

point is the point to test ([x, y]).

line is the line to test point against ([[x1,y1], [x2,y2]]).

rtol is the relative tolerance to use when testing for coincidence.

atol is the absolute tolerance to use when testing for coincidence.

Returns True if the point is on the line, else False.

(indices, count) = separate_points_by_polygon(points, polygon, closed=True, check in-
put=True, verbose=False)

separate_points_by_polygon Module: utilities.polygon

Separate a set of points into points that are inside and outside a polygon.

80 Appendix A. Supporting Tools

points is a list of points to separate.

polygon is the polygon used to separate the points.

closed determines whether points on the polygon edge should be regarded as inside or outside the polygon.
True means they are inside.

check_input specifies whether the input parameters are checked – True means check the input parameters.

The function returns a tuple (indices, count) where indices is a list of point indices from the input
points list, with the indices of points inside the polygon at the left and indices of points outside the polygon
listed at the right. The count value is the count (from the left) of the indices of the points inside the polygon.

<area> = polygon_area(polygon)
Module: utilities.polygon

Returns area of an arbitrary polygon (reference http://mathworld.wolfram.com/PolygonArea.html).

[xmin, xmax, ymin, ymax] = plot_polygons(polygons points, style=None, figname=None, label=None,
verbose=False)

Module: utilities.polygon

Plot a list of polygons to a file.

polygons_points is a list of polygons to plot.

style is a list of style strings to be applied to the corresponding polygon in polygons_points. A polygon
can be closed for plotting purposes by assigning the style string ’line’ to it in the appropriate place in the style
list. The default style is ’line’.

figname is the path to the file to save the plot in. If not specified, use ‘test image.png’.

The function returns a list containing the minimum and maximum of the points in all the input polygons, i.e.
[xmin, xmax, ymin, ymax].

A.3. utilities/polygons 81

A.4 coordinate transforms

82 Appendix A. Supporting Tools

A.5 geospatial data

This describes a class that represents arbitrary point data in UTM coordinates along with named attribute values.

class Geospatial_data(data points=None, attributes=None, geo reference=None, default attribute -
name=None, file name=None, latitudes=None, longitudes=None, points are lats -
longs=False, max read lines=None, load file now=True, verbose=False)

Module: geospatial_data.geospatial_data

This class is used to store a set of data points and associated attributes, allowing these to be manipulated by
methods defined for the class.

The data points are specified either by reading them from a NetCDF or CSV file, identified through the parameter
file_name, or by providing their x- and y-coordinates in metres, either as a sequence of 2-tuples of floats or
as an M × 2 numeric array of floats, where M is the number of points.

Coordinates are interpreted relative to the origin specified by the object geo_reference, which contains data
indicating the UTM zone, easting and northing. If geo_reference is not specified, a default is used.

Attributes are specified through the parameter attributes, set either to a list or array of length M or to a
dictionary whose keys are the attribute names and whose values are lists or arrays of length M . One of the
attributes may be specified as the default attribute, by assigning its name to default_attribute_name. If
no value is specified, the default attribute is taken to be the first one.

Note that the Geospatial_data object currently reads entire datasets into memory i.e. no memomry block-
ing takes place. For this we refer to the set_quantity() method which will read PTS and CSV files into
ANUGA using memory blocking allowing large files to be used.

<Geospatial_data>.import_points_file(file name, delimiter=None, verbose=False)
Module: geospatial_data.geospatial_data

Import a TXT, CSV or PTS points data file into a codeGeospatial data object.

file_name is the path to a TXT, CSV or PTS points data file.

delimiter is currently unused.

<Geospatial_data>.export_points_file(file name, absolute=True, as lat long=False, isSouthHemi-
sphere=True)

Module: geospatial_data.geospatial_data

Export a CSV or PTS points data file from a Geospatial_data object.

file_name is the path to the CSV or PTS points file to write.

absolute determines if the exported data is absolute or relative to the Geospatial_data object geo -
reference. If True the exported data is absolute.

as_lat_long exports the points data as latitudes and longitudes if True.

isSouthHemisphere has effect only if as_lat_long is True and causes latitude/longitude values to be
for the southern (True) or northern hemispheres (False).

points = <Geospatial_data>.get_data_points(absolute=True, geo reference=None, as lat -
long=False, isSouthHemisphere=True)

Module: geospatial_data.geospatial_data

Get the coordinates for all the data points as an N × 2 array.

absolute determines if the exported data is absolute or relative to the Geospatial_data object geo -
reference. If True the exported data is absolute.

geo_reference is the geo reference the points are relative to, if supplied.

as_lat_long exports the points data as latitudes and longitudes if True.

isSouthHemisphere has effect only if as_lat_long is True and causes latitude/longitude values to be
for the southern (True) or northern hemispheres (False).

A.5. geospatial data 83

<Geospatial_data>.set_attributes(attributes)
Module: geospatial_data.geospatial_data

Set the attributes for a Geospatial_data object.

attributes is the new value for the object’s attributes. May be a dictionary or None.

atributes = <Geospatial_data>.get_attributes(attribute name=None)
Module: geospatial_data.geospatial_data

Get a named attribute from a Geospatial_data object.

attribute_name is the name of the desired attribute. If None, return the default attribute.

<Geospatial_data>.get_all_attributes()
Module: geospatial_data.geospatial_data

Get all attributes of a Geospatial_data object.

Returns None or the attributes dictionary (which may be empty).

<Geospatial_data>.set_default_attribute_name(default attribute name)
Module: geospatial_data.geospatial_data

Set the default attribute name of a Geospatial_data object.

default_attribute_name is the new default attribute name.

<Geospatial_data>.set_geo_reference(geo reference)
Module: geospatial_data.geospatial_data

Set the internal geo reference of a Geospatial_data object.

geo_reference is the new internal geo reference for the object. If None will use the default geo reference.

If the Geospatial_data object already has an internal geo reference then the points data will be changed
to use the new geo reference.

<Geospatial_data>.__add__(other)
Module: geospatial_data.geospatial_data

The __add__() method is defined so it is possible to add two Geospatial_data objects.

geospatial = <Geospatial_data>.clip(polygon, closed=True, verbose=False)
Module: geospatial_data.geospatial_data

Clip a Geospatial_data object with a polygon.

polygon is the polygon to clip the Geospatial_data object with. This may be a list of points, an N × 2
array or a Geospatial_data object.

closed determines whether points on the polygon edge are inside (True) or outside (False) the polygon.

Returns a new Geospatial_data object representing points inside the

Compare with clip_outside(), page 84. specified polygon.

geospatial = <Geospatial_data>.clip_outside(polygon, closed=True, verbose=False)
Module: geospatial_data.geospatial_data

Clip a Geospatial_data object with a polygon.

polygon is the polygon to clip the Geospatial_data object with. This may be a list of points, an N × 2
array or a Geospatial_data object.

closed determines whether points on the polygon edge are inside (True) or outside (False) the polygon.

Returns a new Geospatial_data object representing points outside the specified polygon.

Compare with clip(), page 84.

84 Appendix A. Supporting Tools

(g1, g2) = <Geospatial_data>.split(factor=0.5, seed num=None, verbose=False)
Module: geospatial_data.geospatial_data

Split a Geospatial_data object into two objects of predetermined ratios.

factor is the ratio of the size of the first returned object to the original object. If ’0.5’ is supplied, the two
resulting objects will be of equal size.

seed_num, if supplied, will be the random number generator seed used for the split.

Points of the two new geospatial data object are selected RANDOMLY.

Returns two geospatial data objects that are disjoint sets of the original.

A.5.1 Miscellaneous Functions

The functions here are not Geospatial_data object methods, but are used with them.

X = find_optimal_smoothing_parameter(data file, alpha list=None, mesh file=None, boundary -
poly=None, mesh resolution=100000, north bound-
ary=None, south boundary=None, east boundary=None,
west boundary=None, plot name=’all alphas’, split fac-
tor=0.1, seed num=None, cache=False, verbose=False)

Module: geospatial_data.geospatial_data

Calculate the minimum covariance from a set of points in a file. It does this by removing a small random
sample of points from data_file and creating models with different alpha values from alpha_list and
cross validates the predicted value to the previously removed point data. Returns the alpha value which has the
smallest covariance.

data_file is the input data file and must not contain points outside the boundaries defined and is either a
PTS, TXT or CSV file.

alpha_list is the list of alpha values to use.

mesh_file is the path to a mesh file to create (if supplied). If None a mesh file will be created (named
‘temp.msh’). NOTE: if there is a mesh_resolution defined or any boundaries are defined, any input
mesh_file value is ignored.

mesh_resolution is the maximum area size for a triangle.

north_boundary
south_boundary
east_boundary
west_boundary are the boundary values to use.

plot_name is the path name of the plot file to write.

seed_num is the random number generator seed to use.

The function returns a tuple (min_covar, alpha) where min_covar is the minumum normalised co-
variance and alpha is the alpha value that created it. A plot file is also written.

A.5. geospatial data 85

This is an example of function usage:

convariance_value, alpha = \
find_optimal_smoothing_parameter(data_file=fileName,

alpha_list=[0.0001, 0.01, 1],
mesh_file=None,
mesh_resolution=3,
north_boundary=5,
south_boundary=-5,
east_boundary=5,
west_boundary=-5,
plot_name=’all_alphas’,
seed_num=100000,
verbose=False)

NOTE: The function will not work if the data_file extent is greater than the boundary_poly polygon or
any of the boundaries, e.g. north_boundary, etc.

86 Appendix A. Supporting Tools

A.6 Graphical Mesh Generator GUI

The program graphical_mesh_generator.py in the pmesh module allows the user to set up the mesh of the
problem interactively. It can be used to build the outline of a mesh or to visualise a mesh automatically generated.

Graphical Mesh Generator will let the user select various modes. The current allowable modes are vertex, segment,
hole or region. The mode describes what sort of object is added or selected in response to mouse clicks. When
changing modes any prior selected objects become deselected.

In general the left mouse button will add an object and the right mouse button will select an object. A selected object
can de deleted by pressing the the middle mouse button (scroll bar).

A.6. Graphical Mesh Generator GUI 87

A.7 class Alpha Shape

Alpha shapes are used to generate close-fitting boundaries around sets of points. The alpha shape algorithm produces
a shape that approximates to the ’shape formed by the points’ – or the shape that would be seen by viewing the points
from a coarse enough resolution. For the simplest types of point sets, the alpha shape reduces to the more precise
notion of the convex hull. However, for many sets of points the convex hull does not provide a close fit and the alpha
shape usually fits more closely to the original point set, offering a better approximation to the shape being sought.

In ANUGA , an alpha shape is used to generate a polygonal boundary around a set of points before mesh generation.
The algorithm uses a parameter α that can be adjusted to make the resultant shape resemble the shape suggested by
intuition more closely. An alpha shape can serve as an initial boundary approximation that the user can adjust as
needed.

The following paragraphs describe the class used to model an alpha shape and some of the important methods and
attributes associated with instances of this class.

class Alpha_Shape(points, alpha=None)
Module: alpha_shape

Instantiate an instance of the Alpha_Shape class.

points is an N × 2 list of points ([[x1, y1],[x2, y2]. . .]).

alpha is the ’fitting’ parameter.

alpha_shape_via_files(point file, boundary file, alpha= None)
Module: alpha_shape

This function reads points from the specified point file point_file, computes the associated alpha shape
(either using the specified value for alpha or, if no value is specified, automatically setting it to an optimal
value) and outputs the boundary to a file named boundary_file. This output file lists the coordinates (x,
y) of each point in the boundary, using one line per point.

<Alpha_shape>.set_boundary_type(raw boundary=True, remove holes=False, smooth indents=False,
expand pinch=False, boundary points fraction=0.2)

Module: alpha_shape

This function sets internal state that controls how the Alpha_shape boundary is presented or exported.

raw_boundary sets the type to raw if True, i.e. the regular edges of the alpha shape.

remove_holes, if True removes small holes (’small’ is defined by boundary_points_fraction).

smooth_indents, if True removes sharp triangular indents in the boundary.

expand_pinch, if True tests for pinch-off and corrects – preventing a boundary vertex from having more
than two edges.

boundary = <Alpha_shape>.get_boundary()
Module: alpha_shape

Returns a list of tuples representing the boundary of the alpha shape. Each tuple represents a segment in the
boundary by providing the indices of its two endpoints.

See set_boundary_type(), page 88.

<Alpha_shape>.write_boundary(file name)
Module: alpha_shape

Writes the list of 2-tuples returned by get_boundary() to the file file_name, using one line per tuple.

See set_boundary_type(), page 88.
See get_boundary(), page 88.

88 Appendix A. Supporting Tools

A.8 Numerical Tools

The following table describes some useful numerical functions that may be found in the module
utilities.numerical_tools:

angle(v1, v2=None) Angle between two-dimensional vectors v1 and v2, or be-
tween v1 and the x-axis if v2 is None. Value is in range 0 to
2π.

normal_vector(v) Normal vector to v.

mean(x) Mean value of a vector x.

cov(x, y=None) Covariance of vectors x and y. If y is None, returns cov(x,
x).

err(x, y=0, n=2, relative=True) Relative error of ‖x−y‖ to ‖y‖ (2-norm if n = 2 or Max norm
if n = None). If denominator evaluates to zero or if y is
omitted or if relative=False, absolute error is returned.

norm(x) 2-norm of x.

corr(x, y=None) Correlation of x and y. If y is None returns autocorrelation
of x.

ensure_numeric(A, typecode=None) Returns a numeric array for any sequence A. If A is already
a numeric array it will be returned unaltered. Otherwise, an
attempt is made to convert it to a numeric array. (Needed
because array(A) can cause memory overflow.)

histogram(a, bins, relative=False) Standard histogram. If relative is True, values will be
normalised against the total and thus represent frequencies
rather than counts.

create_bins(data, number_of_-
bins=None)

Safely create bins for use with histogram. If data contains
only one point or is constant, one bin will be created. If
number_of_bins is omitted, 10 bins will be created.

A.9 Finding the Optimal Alpha Value

The function ???? more to come very soon

A.8. Numerical Tools 89

90

APPENDIX

B

ANUGA Full-scale Validations

B.1 Overview

There are some long-running validations that are not included in the small-scale validations that run when you exe-
cute the validate_all.py script in the anuga_validation/automated_validation_test directory.
These validations are not run automatically since they can take a large amount of time and require an internet connec-
tion and user input.

B.2 Patong Beach

The Patong Beach validation is run from the automated_validation_tests/patong_beach_-
validation directory. Just execute the validate_patong.py script in that directory. This will run a Patong
Beach simulation and compare the generated SWW file with a known good copy of that file.

The script attempts to refresh the validation data files from master copies held on the Sourceforge project site. If you
don’t have an internet connection you may still run the validation, as long as you have the required files.

You may download the validation data files by hand and then run the validation. Just go to the ANUGA Sourceforge
project download page at http://sourceforge.net/project/showfiles.php?group_id=172848
and select the validation_data package, patong-1.0 release. You need the data.tgz file and one or more
of the patong.sww.{BASIC|TRIAL|FINAL}.tgz files.

The BASIC validation is the quickest and the FINAL validation is the slowest. The validate.py script will use
whatever files you have, BASIC first and FINAL last.

91

92

APPENDIX

C

Frequently Asked Questions

The Frequently Asked Questions have been move to the online FAQ at:
https://datamining.anu.edu.au/anuga/wiki/FrequentlyAskedQuestions

93

94

APPENDIX

D

Glossary

Term Definition Page
ANUGA Name of software (joint development between ANU and GA) i
bathymetry offshore elevation
conserved quantity conserved (stage, x and y momentum)
Digital Elevation Model (DEM) DEMs are digital files consisting of points of elevations, sampled sys-

tematically at equally spaced intervals.
Dirichlet boundary A boundary condition imposed on a differential equation that specifies

the values the solution is to take on the boundary of the domain.
11

edge A triangular cell within the computational mesh can be depicted as a set
of vertices joined by lines (the edges).

elevation refers to bathymetry and topography
evolution integration of the shallow water wave equations over time
finite volume method The method evaluates the terms in the shallow water wave equation

as fluxes at the surfaces of each finite volume. Because the flux en-
tering a given volume is identical to that leaving the adjacent volume,
these methods are conservative. Another advantage of the finite volume
method is that it is easily formulated to allow for unstructured meshes.
The method is used in many computational fluid dynamics packages.

forcing term
flux the amount of flow through the volume per unit time
grid Evenly spaced mesh
latitude The angular distance on a mericlear north and south of the equator, ex-

pressed in degrees and minutes.
longitude The angular distance east or west, between the meridian of a particular

place on Earth and that of the Prime Meridian (located in Greenwich,
England) expressed in degrees or time.

Manning friction coefficient
mesh Triangulation of domain
mesh file A TSH or MSH file 25
NetCDF
node A point at which edges meet
northing A rectangular (x,y) coordinate measurement of distance north from a

north-south reference line, usually a meridian used as the axis of ori-
gin within a map zone or projection. Northing is a UTM (Universal
Transverse Mercator) coordinate.

points file A PTS or CSV file

95

polygon A sequence of points in the plane. ANUGA represents a polygon either
as a list consisting of Python tuples or lists of length 2 or as an N × 2
numeric array, where N is the number of points.
The unit square, for example, would be represented either as
[[0,0], [1,0], [1,1], [0,1]] or as array([0,0],
[1,0], [1,1], [0,1]).
NOTE: For details refer to the module utilities/polygon.py.

resolution The maximal area of a triangular cell in a mesh
reflective boundary Models a solid wall. Returns same conserved quantities as those present

in the neighbouring volume but reflected. Specific to the shallow water
equation as it works with the momentum quantities assumed to be the
second and third conserved quantities.

11

stage
anuga viewer visualisation tool used with ANUGA 78
time boundary Returns values for the conserved quantities as a function of time. The

user must specify the domain to get access to the model time.
11

topography onshore elevation
transmissive boundary 11
vertex A point at which edges meet.
xmomentum conserved quantity (note, two-dimensional SWW equations say only x

and y and NOT z)
ymomentum conserved quantity

96 Appendix D. Glossary

INDEX

(g1, g2) = <Geospatial_data>.split()
(Geospatial data method), 85

(indices, count) = separate_points_-
by_polygon() (in module utili-
ties.polygon), 80

(time, Q) = get_flow_through_cross_-
section() (in module), 61

(x, y) = get_maximum_inundation_-
location() (in module), 61

<area> = polygon_area() (in module utili-
ties.polygon), 81

<array> = inside_polygon() (in module utili-
ties.polygon), 79

<array> = outside_polygon() (in module utili-
ties.polygon), 80

<boolean> = is_inside_polygon() (in mod-
ule utilities.polygon), 80

<boolean> = is_outside_polygon() (in mod-
ule utilities.polygon), 80

<boolean> = point_on_line() (in module utili-
ties.polygon), 80

<callable> = Polygon_function (class in util-
ities.polygon), 79

<point> = point_in_polygon() (in module
utilities.polygon), 79

<polygon> = read_polygon() (in module utili-
ties.polygon), 79

[xmin, xmax, ymin, ymax] = plot_-
polygons() (in module utilities.polygon),
81

ANUGA , i
<Geospatial_data>.__add__() (Geospatial -

data method), 84
<Geospatial_data>.export_points_file()

(Geospatial data method), 83
<Geospatial_data>.get_all_attributes()

(Geospatial data method), 84
<Geospatial_data>.import_points_file()

(Geospatial data method), 83
<Geospatial_data>.set_attributes()

(Geospatial data method), 84

<Geospatial_data>.set_default_-
attribute_name() (Geospatial data
method), 84

<Geospatial_data>.set_geo_reference()
(Geospatial data method), 84

<callable_object> = Interpolation_-
function (class in), 51

<callable_object> = file_function() (in
module), 51

<domain>.add_quantity() (method), 50
<domain>.boundary_statistics() (method),

58
<domain>.evolve() (method), 57
<domain>.get_boundary_tags() (method), 52
<domain>.get_centroid_coordinates()

(Domain method), 48
<domain>.get_datadir() (Domain method), 46
<domain>.get_disconnected_triangles()

(Domain method), 48
<domain>.get_maximum_inundation_-

elevation() (method), 60
<domain>.get_maximum_inundation_-

location() (method), 60
<domain>.get_name() (Domain method), 46
<domain>.get_nodes() (Domain method), 48
<domain>.get_triangles() (Domain method),

48
<domain>.get_vertex_coordinates() (Do-

main method), 48
<domain>.get_wet_elements() (method), 60
<domain>.quantity_statistics() (method),

59
<domain>.set_boundary() (method), 52
<domain>.set_datadir() (Domain method), 46
<domain>.set_default_order() (Domain

method), 47
<domain>.set_maximum_allowed_speed()

(Domain method), 47
<domain>.set_minimum_allowed_height()

(Domain method), 47
<domain>.set_minimum_storable_height()

(Domain method), 47

97

<domain>.set_name() (Domain method), 46
<domain>.set_quantities_to_be_-

monitored() (method), 58
<domain>.set_quantities_to_be_stored()

(Domain method), 48
<domain>.set_quantity() (method), 49
<domain>.set_region() (method), 50
<domain>.set_store_vertices_uniquely()

(Domain method), 47
<domain>.set_time() (Domain method), 47
<domain>.statistics() (method), 58
<domain>.timestepping_statistics() (

method), 58
<mesh>.add_hole() (Mesh method), 44
<mesh>.add_hole_from_polygon() (Mesh

method), 44
<mesh>.add_points_and_segments() (Mesh

method), 44
<mesh>.add_region() (Mesh method), 44
<mesh>.add_region_from_polygon() (Mesh

method), 45
<mesh>.add_vertices() (Mesh method), 45
<mesh>.auto_segment() (Mesh method), 45
<mesh>.export_mesh_file() (Mesh method), 45
<mesh>.generate_mesh() (Mesh method), 45
<mesh>.import_ungenerate_file() (Mesh

method), 45
<quantity>.get_integral() (method), 60
<quantity>.get_maximum_location() (

method), 60
<quantity>.get_maximum_value() (method),

60
<quantity>.get_values() (method), 59
<quantity>.set_values() (method), 59

Alpha_Shape (class in), 88
ANUGA

credits, ii
licence, ii

atributes = <Geospatial_data>.get_-
attributes() (Geospatial data method),
84

boundary conditions, 11, 29, 52

create_domain_from_regions() (in module),
43

create_mesh_from_regions() (in module), 42
csv2building_polygons() (in module), 68
Culvert_flow (class in), 55

dem2pts() (in module), 68
Dirichlet_boundary (class in), 52
Dirichlet_discharge_boundary (class in), 53
Documentation, 39

Domain (class in), 46

elevation = get_maximum_inundation_-
elevation() (in module), 61

evolution, 13, 57

Field_boundary (class in), 53
File_boundary (class in), 53
Forcing terms, 54

General_forcing (class in), 54
geospatial = <Geospatial_data>.clip()

(Geospatial data method), 84
geospatial = <Geospatial_data>.clip_-

outside() (Geospatial data method), 84
Geospatial_data (class in), 83

Inflow (class in), 55
Initial Conditions, 49
Initialising the Domain, 46

Mesh
generation, 40

Mesh (class in), 44
mesh file, 25
mesh, establishing, 9, 16, 24

points = <Geospatial_data>.get_data_-
points() (Geospatial data method), 83

populate_polygon() (in module utilities.polygon),
79

public vs private interface, 39

Q = <domain>.get_quantity() (method), 58
quantity = <domain>.create_quantity_-

from_expression() (method), 62

Rainfall (class in), 55
Reflective_boundary (class in), 52

separate_points_by_polygon, 80
slump_tsunami() (in module), 50
stage, i
sww2dem() (in module), 67
sww2timeseries() (in module), 61

Time_boundary (class in), 52
Transmissive_boundary (class in), 52
Transmissive_momentum_set_stage_-

boundary (class in), 53
Transmissive_stage_zero_momentum_-

boundary (class in), 53

urs2sts() (in module), 68
utilities.polygon (module), 79
utilities.polygon (standard module), 79

X = find_optimal_smoothing_parameter()
(Geospatial data method), 85

98 Index

BIBLIOGRAPHY

[nielsen2005] Hydrodynamic modelling of coastal inundation. Nielsen, O., S. Roberts, D. Gray, A. McPherson and
A. Hitchman. In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International Congress on Modelling and
Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2005, pp. 518-523.
ISBN: 0-9758400-2-9.
http://www.mssanz.org.au/modsim05/papers/nielsen.pdf

[grid250] Australian Bathymetry and Topography Grid, June 2005. Webster, M.A. and Petkovic, P. Geoscience Aus-
tralia Record 2005/12. ISBN: 1-920871-46-2.
http://www.ga.gov.au/meta/ANZCW0703008022.html

[ZR1999] Catastrophic Collapse of Water Supply Reservoirs in Urban Areas. C. Zoppou and S. Roberts. ASCE J.
Hydraulic Engineering, 125(7):686–695, 1999.

[Toro1999] Riemann problems and the waf method for solving the two-dimensional shallow water equations. E. F.
Toro. Philosophical Transactions of the Royal Society, Series A, 338:43–68, 1992.

[1] Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton-jacobi equations.
A. Kurganov, S. Noelle, and G. Petrova. SIAM Journal of Scientific Computing, 23(3):707–740, 2001.

99

