
ANUGA Internal Tools Manual
Release 1.3.0-beta

Geoscience Australia and the Australian National University

Wednesday June, 2013, 26thminutes to in the afternoon

Geoscience Australia
Email: ole.nielsen@ga.gov.au

Copyright c©2004, 2005, 2006 Australian National University and Geoscience Australia. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted under
the terms of the GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version, provided that this entire notice is included in all copies of
any software which is or includes a copy or modification of this software and in all copies of the supporting
documentation for such software.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License (http://www.gnu.org/copyleft/gpl.html) for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

This work was produced at Geoscience Australia and the Australian National University funded by the Common-
wealth of Australia. Neither the Australian Government, the Australian National University, Geoscience Australia
nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or repre-
sents that its use would not infringe privately-owned rights. Reference herein to any specific commercial products,
process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the Australian Government, Geoscience Australia or the Aus-
tralian National University. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the Australian Government, Geoscience Australia or the Australian National University, and shall not be
used for advertising or product endorsement purposes.

This document does not convey a warranty, express or implied, of merchantability or fitness for a particular
purpose.

ANUGA

Manual typeset with LATEX

Credits:

• ANUGA was developed and is maintained by Stephen Roberts, Ole Nielsen, Duncan Gray and Jane Sexton.

License:

• ANUGA is freely available and distributed under the terms of the GNU General Public Licence.

ii

CONTENTS

1 Internal Tools 1
1.1 Introduction . 1

1.1.1 acceptance tests . 2
1.1.1.1 Using acceptance tests . 2

1.1.2 cmpsww . 3
1.1.2.1 Using cmpsww . 3
1.1.2.2 Bugs . 3

1.1.3 event selection . 4
1.1.3.1 Using event selection . 4

1.1.4 Installing event selection . 10
1.1.4.1 Requirements . 10
1.1.4.2 Bugs . 10

1.1.5 mk digest . 11
1.1.5.1 Using mk digest . 11
1.1.5.2 Installing mk digest . 11

1.1.6 plotcsv . 12
1.1.6.1 Using plotcsv . 12
1.1.6.2 Installing plotcsv . 18
1.1.6.3 Building plotcsv for Windows . 18
1.1.6.4 Bugs . 18

1.1.7 tar file . 19
1.1.7.1 Using tar file . 19
1.1.7.2 Using untar file . 19
1.1.7.3 Installing tar file . 19

1.1.8 update DVD images . 20
1.1.8.1 Using update DVD images . 20
1.1.8.2 Configuration . 20
1.1.8.3 extra files . 23

1.1.9 update lic checksum . 24
1.1.9.1 Using update lic checksum . 24
1.1.9.2 Using create lic file . 24

1.1.10 write large files . 26
1.1.10.1 Using write large files . 26
1.1.10.2 Installing write large files . 26
1.1.10.3 Bugs . 27

iii

iv

CHAPTER

ONE

Internal Tools

1.1 Introduction

This document describes the tools written for internal ANUGA use at Geoscience Australia.

These tools are necessarily ad-hoc in nature and of possibly limited general use. If a tool becomes useful to a
wider audience it may be moved into the ’ANUGA Tools Manual’.

The tools documented below are:

• acceptance tests

• cmpsww

• event selection

• mk digest

• plotcsv

• tar file

• update DVD images

• write large files

1

1.1.1 acceptance tests

This collection of tests is designed to speed up and automate acceptance testing of a ’cluster’ of compute servers.
The tests are highly dependent on the installed software environment, so may have limited use outside Geoscience
Australia, though the system design does lend itself to change.

The suite of tests checks:

• installed software, such as python installed packages

• availability of NFS mounted filesystems

• ability to ssh to each compute node from the master

• various aspects of parallel computation

The tests are a collection of self-contained acceptance ’testlets’ that will be usually run from a controlling master
program, but may be run individually. This is very useful when developing a new test, as it can be run by itself
until correct.

1.1.1.1 Using acceptance tests

The acceptance tests are designed to be run from the cluster ’master node’, so you must ssh to that machine. It is
assumed the acceptance tests code suite itself has been installed on the node it is being run from and other required
code has been installed on all nodes.

Before running the acceptance tests you must prepare some environment variables:

PYTHON Defines the path to the python executable to use for the sub-tests.
PYTHONPATH The path to the ANUGA source directory.

EQRMPATH The path to the EQRM source directory. If not set, EQRM is not tested.

The first sub-test run dumps the testing environment to the screen as a check.

To run the acceptance tests, do the following:

export PYTHON=python2.5 # we want to run python 2.5 in the tests
export PYTHONPATH=/home/r-w/sandpit/ga/anuga_core/source/
EQRMPATH not set
python test_all.py

While the tests are running, you will see the results of each test listed to the screen. Don’t worry about catching
this output; everything is written to a log file anuga.log.

2 Chapter 1. Internal Tools

1.1.2 cmpsww

The cmpsww program is used to compare two SWW files for some approximation of equality. The user must be
able to define what to compare in the two files, as well as set tolerances for ’how close is close’.

1.1.2.1 Using cmpsww

The usage printed by the program is:

Usage: cmpsww.py <options> <file1> <file2>
where <options> is zero or more of:

-h print this help
-a <val> set absolute threshold of ’equivalent’
-r <val> set relative threshold of ’equivalent’
-g <arg> check only global attributes specified

<arg> has the form <globname>[,<globname>[,...]]
-t <arg> check only timesteps specified

<arg> has the form <starttime>[,<stoptime>[,<step>]]
-v <arg> check only the named variables

<arg> has the form <varname>[,<varname>[,...]]
and <file1> and <file2> are two SWW files to compare.

The program exit status is one of:
0 the two files are equivalent
else the files are not equivalent.

Note that if no globals, variable or timesteps are specified, the program checks all globals and all variables for all
timesteps.

1.1.2.2 Bugs

The cmpsww program is still being developed and needs to change in concert with the methodology of determining
if an SWW file is as expected.

1.1. Introduction 3

1.1.3 event selection

event_selection is a graphical program used to select earthquake events.

It designed to run under both Windows and Linux.

1.1.3.1 Using event selection

Once you start the event_selection program you will see:

Before using the program, you need to set the output base directory field at the top of the window. The program
needs to write some data files and this field tells the program where to write them. Just click in the box to select a
directory somewhere in your filesystem.

4 Chapter 1. Internal Tools

We set the directory to C:\temp. Next, you need to select the Region from the drop-down list:

At this point you have set the values that will probably never change. If you close the program at this point, then
the two values set (base directory and Region) and the three fields below (Hazard index, Minimum wave height
and Maximum wave height) will be remembered and restored the next time you run the program. This data is
stored in a file event_selection.cfg in the event_selection install directory.

1.1. Introduction 5

Now you need to enter data specific to a particular event you are going to model. Fill in the Hazard index (location
in the database of the point where the hazard is measured), Minimum wave height and Maximum wave height
values and click on the List button:

6 Chapter 1. Internal Tools

The program has filled the text box below the List button with events that satisfy your listed requirements. You
need to select one of these events, which puts the Quake ID number into the Quake ID textbox below:

1.1. Introduction 7

Now you can click on either the Multimux or Grid buttons. Clicking on the Multimux button gives us:

If you now look in the output directory C:\temp you will see that two directories have been created:

10959
Results_Australia_1009_0.50_1.00

The Results_Australia_1009_0.50_1.00 directory contains the fault.xy and quake_prob.txt
files used during the calculation of the multimux results. The Results directory name contains the region name,
hazard index and minimum and maximum wave heights in an encoded form.

The 10959 directory contains the multimux data for the selected Quake ID in a file called event_list.

8 Chapter 1. Internal Tools

The Grid button was installed to allow the selection of seafloor deformation grid data. Clicking on this button
shows:

and writes some extra files into the Results_Australia_1009_0.50_1.00 directory:

event_010959.list
faults_010959.params

1.1. Introduction 9

The event_010959.list file contains:

The faults_010959.params file contains:

1.1.4 Installing event selection

There is an installer program used to install event_selection on a Windows machine (usually found at
georisk\downloads\event_selection). The installer is generated by moving into the installer
directory and right-clicking on the EventSelection.nsi file and selecting Compile NSIS script. You
must have installed the NSIS package for this to work. Get it from http://nsis.sourceforge.net/Main Page.

Once you have installed event_selection on your Windows machine you will have a desktop icon and Start
menu entry to start the program with.

Under Linux just execute the event_selection.py program, either from the console or from a desktop icon
or menu entry you created.

1.1.4.1 Requirements

Various pieces of python software must be installed before event_selection can be used. These are:

• wxpython - a python package

• NSIS - a Windows installer generator (required if creating a Windows installer)

1.1.4.2 Bugs

The look of event_selection under Linux is wrong – it needs to be rewritten using sizers for GUI layout.

10 Chapter 1. Internal Tools

1.1.5 mk digest

mk_digest.py is a small program used to create an MD5 digest of a file. The digest string is written into a file.

This program is used in the Patong Beach validation file refresh process.

1.1.5.1 Using mk digest

usage: mk_digest.py <datafile> <digestfile>
where <datafile> is the file for which we create a digest string

<digestfile> is the created file that contains the hex string.

1.1.5.2 Installing mk digest

Installation is not required, just run the program.

1.1. Introduction 11

1.1.6 plotcsv

plotcsv is a GUI program to quickly plot selected columns of one or more CSV files onto a graph screen. Once
the desired graph is plotted you may save the plot as a picture file.

The program is designed to run under both Windows and Linux.

The CSV files used must have column header information as the first line as the column header values are used
during the plotting process.

1.1.6.1 Using plotcsv

Start the program by selecting it from the Start menu or double-clicking on the desktop icon. You will see the
following window:

The first thing you must do is select one or more CSV files to plot. The files you are going to plot are listed in the
textbox at the top of the screen. There is nothing there because this is the first time you have run plotcsv. Note
that plotcsv will remember the selected files, as well as other information, when you next start the program.
This files is plotcsv.cfg and it is stored in the plotcsv install directory.

12 Chapter 1. Internal Tools

This screen shot shows what happens when you click on the Add button - you get a file selector that lets you
choose the CSV files to plot.

1.1. Introduction 13

In this example we selected both test.csv and test2.csv.

14 Chapter 1. Internal Tools

You must now set the column data to display the X and Y axis of your plot. The X-Column and Y-Column listboxes
are used to set which column data to use. In this example we are going to plot Stage versus Time, so we select the
appropriate columns below:

1.1. Introduction 15

Note that choosing a column to plot also sets the text in the X-Label and Y-Label textboxes. You can change this
text and, in this example, we want to change the stage axis text to Stage (meters). We also add some title text and
turn on the graph legend:

16 Chapter 1. Internal Tools

Finally, once we are ready, we click on the Plot button and see our plot:

You are free to configure the plot, make it larger, save a picture file, etc. Closing the plot window shuts down the
application (see Bugs section below).

1.1. Introduction 17

1.1.6.2 Installing plotcsv

For Windows execute the plotcsv_X.X.exe file in N:\georisk\downloads\plotcsv. This will install
plotcsv into your C:\Program Files directory and create a desktop icon.

Linux needs no installation, just run the program.

1.1.6.3 Building plotcsv for Windows

The source directory for plotcsv contains an installer directory. Just right-click on the plotcsv.nsi
file and select ”Compile NSIS Script”. You must ihave the NSIS installer installed, of course. Get it from
http://nsis.sourceforge.net/Main Page.

1.1.6.4 Bugs

The mixture of matplotlib and wxpython isn’t successful - you only get one plot and then you must close the
application. Using the wx_mpl_bars.py example from http://eli.thegreenplace.net/2008/08/01/matplotlib-with-
wxpython-guis/, rewrite plotcsv to have the parameter changes (such as title text) show up immediately in the
current plot.

The look of plotcsv under Linux is wrong – it needs to be rewritten using sizers for GUI layout.

18 Chapter 1. Internal Tools

1.1.7 tar file

The tar_file.py program is used to tar and compress a file or directory into a *.tgz file. We have a python
function to do this as we can’t use a local tar program, as this wouldn’t work under Windows.

The associated untar_file.py program reverses the above process.

These two programs are used in the Patong Beach validation suite.

1.1.7.1 Using tar file

tar_file.py <tarfile> <file1> [<file2>, ...]

where tarfile is the path to the tar file to create, and file? is the path to a file or directory to include.

1.1.7.2 Using untar file

untar_file.py <tarfile> [<output_directory>]

where tarfile is the path to the file to untar, and output directory is the directory to write the results into.

If output directory is not specified then the compressed file is unpacked into the current directory.

1.1.7.3 Installing tar file

No installation is required, just run the program.

1.1. Introduction 19

1.1.8 update DVD images

update_DVD_images is a program used to create the DVD image filesystems that were burnt to DVD for the
2009 East Coast Tsunami Inundation study.

1.1.8.1 Using update DVD images

To use the update_DVD_images program, just execute the program:

python update_DVD_images.py <name of jurisdiction>

Currently, the jurisdiction names are:

• BatemansBay

• GoldCoast

• Gosford

• Hobart

So to recreate the GoldCoast DVD image sub directory, do:

python update_DVD_images.py goldcoast

Note that the case of the jurisdiction name doesn’t matter.

The program will create a new sub-directory with the formal jurisdiction name (see below) in the current directory.
The old jurisdiction sub-directory is deleted first.

1.1.8.2 Configuration

Here we discuss how to configure update_DVD_images to handle a new jurisdiction or change what
files/directories are copied.

In update_DVD_images.py there are a set of dictionaries that control what is done for each jurisdiction.

The first dictionary is source_jurisdiction_path which maps the lowercase jurisdiction name to the
dictionary defining that particular jurisdiction:

source_jurisdiction_path = {’hobart’: hobart_data,
’batemansbay’: batemans_bay_data,
’gosford’: gosford_data,
’goldcoast’: gold_coast_data}

If you create a new jurisdiction, you need to add another line to the above dictionary.

20 Chapter 1. Internal Tools

In the case of the GoldCoast jurisdiction, we see that the dictionary for the GoldCoast is gold_coast_data:

gold_coast_data = \
{’jurisdiction’: ’GoldCoast’, # jurisdiction name

paths to various source directories
’data_src_path’: ’data/queensland/gold_coast_tsunami_scenario_2009/anuga’,
’arcgis_src_path’: ’data/queensland/gold_coast_tsunami_scenario_2009/ArcGIS’,
’proj_src_path’: ’sandpits/lfountain/anuga_work/production/gold_coast_2009’,

paths to destination directories (under ’jurisdiction’ root)
’data_dst_path’: ’anuga’,
’proj_dst_path’: ’project’,
’arcgis_dst_path’: ’ArcGIS’,

copy or create whole directories
’make_dst_dirs’: [’outputs’],
’copy_data_dirs’: [’boundaries’],

copy ’data’ files or directories
’copy_data_files’: [’outputs/Event1_HAT’, ’outputs/Event1_MSL’,

’outputs/Event2_HAT’, ’outputs/Event2_MSL’,
’outputs/Event3_HAT’, ’outputs/Event3_MSL’

],

copy ’project’ files or directories
’copy_proj_files’: [’build_elevation.py’, ’export_results_max.py’,

’get_runup.py’, ’project.py’, ’run_model.py’,
’setup_model.py’, ’build_urs_boundary.py’,
’combine_gauges.py’, ’get_timeseries.py’,
’run_multiple_events.py’

],

copy ’arcgis’ files or directories
’copy_arc_files’: [’MainBeach.mxd’, ’SurfersParadise.mxd’, ’GoldCoast.mxd’,

’PalmBeach.mxd’, ’Collangatta.mxd’
]

}

The first key is jurisdiction, which maps to a string defining the jurisdiction formal name. This name is used
to create the output DVD staging directory.

’jurisdiction’: ’GoldCoast’,

The next three key values define the complete paths to source directories in the production filesystem:

paths to various source directories
’data_src_path’: ’data/queensland/gold_coast_tsunami_scenario_2009/anuga’,
’arcgis_src_path’: ’data/queensland/gold_coast_tsunami_scenario_2009/ArcGIS’,
’proj_src_path’: ’sandpits/lfountain/anuga_work/production/gold_coast_2009’,

1.1. Introduction 21

These key values are used along with a master path variable defined earlier in update_DVD_images.py to
create the complete paths to source directories:

main_path = ’/nas/gemd/georisk_models/inundation’

For example, the full path to the ’data’ source directory would be:

data_src_path = os.path.join(main_path, j_dict[’data_src_path’])

where j_dict would be a reference to the jurisdiction dictionary controlling the process (gold_coast_data
in this case).

The next three definitions define the names of output directories in the staging directory:

paths to destination directories (under ’jurisdiction’ root)
’data_dst_path’: ’anuga’,
’proj_dst_path’: ’project’,
’arcgis_dst_path’: ’ArcGIS’,

These three names are combined with the current directory and the jurisdiction staging directory name to produce
the full path to output directories:

data_dst_path = os.path.join(os.getcwd(), j_name, j_dict[’data_dst_path’])
proj_dst_path = os.path.join(os.getcwd(), j_name, j_dict[’proj_dst_path’])
arcgis_dst_path = os.path.join(os.getcwd(), j_name, j_dict[’arcgis_dst_path’])

Note that j_name is the jurisdiction name. So in this case, we would create the output directories:

./GoldCoast/anuga # data directory

./GoldCoast/project # project files directory

./GoldCoast/ArcGIS # ArcGIS files

The next two key values define the names of empty directories to create or names of complete directories to copy
to the data_dst_path directory:

copy or create whole directories
’make_dst_dirs’: [’outputs’],
’copy_data_dirs’: [’boundaries’],

The values here are lists of one or more directories to create or copy. If there are no directories to create/copy, just
use an empty list.

22 Chapter 1. Internal Tools

Next, we define which individual files we copy to the destination data directory:

copy ’data’ files or directories
’copy_data_files’: [’outputs/Event1_HAT’, ’outputs/Event1_MSL’,

’outputs/Event2_HAT’, ’outputs/Event2_MSL’,
’outputs/Event3_HAT’, ’outputs/Event3_MSL’],

Again we have a list of files to copy. Note that we must specify the path following the data_dst_path variable
(anuga in this case), so we specify the directory under anuga and then the source file (or directory). Also note
that we can copy a simple file or complete directory here.

You must create each target directory as an empty directory before copying files. That is why outputs appears
in the make_dst_dirs key-value definition above.

Similarly, we now define ’project’ files to copy:

copy ’project’ files or directories
’copy_proj_files’: [’build_elevation.py’, ’export_results_max.py’,

’get_runup.py’, ’project.py’, ’run_model.py’,
’setup_model.py’, ’build_urs_boundary.py’,
’combine_gauges.py’, ’get_timeseries.py’,
’run_multiple_events.py’],

These files (or directories) will be copied from the path defined in the proj_src_path variable to the path
defined in the proj_dst_path variable.

Finally, we define ’arcgis’ files or directories to copy:

copy ’arcgis’ files or directories
’copy_arc_files’: [’MainBeach.mxd’, ’SurfersParadise.mxd’, ’GoldCoast.mxd’,

’PalmBeach.mxd’, ’Collangatta.mxd’]

These files (or directories) will be copied from the path defined in the arcgis_src_path variable to the path
defined in the arcgis_dst_path variable.

1.1.8.3 extra files

In the same directory as update_DVD_images there must be a directory extra_files. This directory con-
tains ’scaffolding’ files that must exist on the DVD as well as jurisdiction-specific files that may be modifications
of project files that replace those files on the DVD.

All files in the extra_files directory are copied to each jurisdiction DVD staging directory. All top-level
directories that aren’t named for a jurisdiction are also copied to each staging directory.

Each directory named for a jurisdiction will be copied to the staging directory if the directory has the same name as
the jurisdiction staging directory we are creating. This jurisdiction directory would normally contain jurisdiction-
specific scaffolding files, such as index.html, etc, as well as modified project files.

1.1. Introduction 23

1.1.9 update lic checksum

The update_lic_checksum program is used to update all licence files (*.lic) in a filesystem sub tree.

The create_lic_file program is used to create a licence file that controls one or more data files.

1.1.9.1 Using update lic checksum

The program is used:

update_lic_checksum.py [-m <lic_mask>] <directory>

where directory is the path to the sub directory containing licence files to update. Normally, update_lic_-
checksum would search for and update all *.lic files. If you want to update licence files that have a filename
form of *.txt then use the -m *.txt option.

Note that the licence files being updated must contain well-formed XML data.

1.1.9.2 Using create lic file

create_lic_file is a program used to create licence files from scratch. It is used so:

usage: create_lic_file.py <options> <lic_file> [<filename> ...]
where <options> is zero or more of:

--author <name>
-w <name> - name of the author
--publishable [Yes|No]
-p [Yes|No] - is document publishable
--accountable <name>
-a <name> - name of person accountable for file
--source <string>
-s <string> - source of controlled file
--owner <name>
-o <name> - IP owner name
--info <string>
-i <string> - IP extra information

<lic_file> is the name of the licence file to create.
<filename> is one or more files to control.

If the file to be created (lic file) already exists, the program aborts; it will not overwrite any existing file.

24 Chapter 1. Internal Tools

You must use the options to specify author name, etc. If these are not overridden the generated licence file will
contain default values. For example, if you did this:

python create_lic_file.py test.lic README

then the output file test.lic would contain:

<?xml version=’1.0’ encoding=’iso-8859-1’?>
<ga_license_file>

<metadata>
<author>rwilson</author>

</metadata>
<datafile>

<filename>README</filename>
<checksum>1387779554</checksum>
<publishable>Y</publishable>
<accountable>rwilson</accountable>
<source>Generated by ANUGA development team</source>
<IP_owner>Geoscience Australia</IP_owner>
<IP_info>For use with the ANUGA test suite</IP_info>

</datafile>
</ga_license_file>

In particular, the author and accountable values are defaulted with the username from the environment.

Note the default values for these fields:

<publishable>Y</publishable>
<source>Generated by ANUGA development team</source>
<IP_owner>Geoscience Australia</IP_owner>
<IP_info>For use with the ANUGA test suite</IP_info>

1.1. Introduction 25

1.1.10 write large files

This program is actually a suite of programs used to exercise the NetCDF file I/O code.

The NetCDF I/O model has three models of the way data is written:

• The ’classic’ model

• The ’large’ model

• The ’NetCDF4’ model

The classic model is usually dismissed as the ’2GiB limit’ model, but this is an over-simplification. Chunks of
data wriiten to a file in one write will contain an offset to the next related chunk ’upstream’ in the file. This offset
has a 2GiB limit, hence the ’2Gib’ oversimplification.

The long model relaxes some of the limits in the classic model.

The NetCDF4 model allows much larger datasets to be written to a file, along with compression, more than one
unlimited dimension, etc.

Some effort is made to simulate the way an ANUGA program would write data. In particular, the variables written
are interleaved in the way ANUGA would write them.

Also, each data value written to the file is a floating point number which encodes variable number, variable ’slice’
and index into each slice. This is to ensure that each variable value written is unique and to allow for checking
that what we read is what we wrote.

1.1.10.1 Using write large files

There are three programs in the write_large_files suite:

rwi big file.py writes using the classic model
rwil big file.py writes using the large model
rwi4 big file.py writes using the NetCDF4 model

Each of the three programs is used in the same way:

Usage: write_large_files <opts> <varsize> [<numvars>]

where <varsize> is a number followed by an optional modifier:
1024M or 4G

the assumed modifier if none is given is ’M’.
and <numvars> is the number of variables of the above size

to write. If not supplied, 1 is assumed.
There can be at most 100 variables.

and <opts> is zero or more of:
-c s close & open the output file after

each variable slice is read/written,
-t rf time the complete file read,
-t wf time the complete file write,

For instance, if we wanted to write a 3GiB ’large’ file containing 6 variables we would do:

python rwil_big_file.py 512M 6

1.1.10.2 Installing write large files

No installation is necessary, just execute the programs.

26 Chapter 1. Internal Tools

1.1.10.3 Bugs

Instead of having three files, one to test each NetCDF model, just add an extra option to a single program:

-c classic model (default)
-l large model
-4 NetCDF4 model

1.1. Introduction 27

