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Abstract

This thesis examines numerical solutions of the one-dimensional shallow water wave equations.

A mathematical derivation and investigation of the equations is provided with emphasis on the

important assumptions of shallow water theory and possible difficulties inherent in analytical

and numerical calculations. An overview of the different numerical methods used to solve the

shallow water wave equations is also given. Unlike most texts this review considers both finite

volume and finite element methods and discusses their differences and similarities, advantages

and disadvantages. A classification of these schemes is attempted to facilitate the differentia-

tion of the various methods used to simulate shallow water flow. Emphasis was placed on a

simple synthesis of appropriate techniques and where possible implementation issues specific to

modelling the shallow water wave equations.

A second-order central-upwind Godunov-type finite volume method for solving the one-

dimensional shallow water wave equations is constructed. This scheme can easily be extended

to simulate two-dimensional flows and advantageously involves no Riemann solvers or char-

acteristic decomposition. A high resolution is achieved due to the small amount of numerical

dissipation introduced. The local propagation speeds of the rarefaction fans at each cell interface

are used to estimate the size of the fan. The solution in these discontinuous regions are then

averaged and combined with the estimates of the solutions in the smooth regions to obtain a final

approximation. A fractional-step method is used to reduce the non-homogeneous equations into

a sequence of augmented problems. The solution is then evolved through time using a second-

order Runge-Kutta method. Another advantage of this method is that it can easily be extended

to model two-dimensional flow. The scheme is second-order accurate when modelling smooth

flows and first-order accurate when modelling flow characterised by shocks.

The central-upwind scheme presented in the thesis has been implemented in a modularised

object-oriented software package written in Python. This code was developed from scratch, to

facilitate greater understanding and more comprehensive evaluation of the numerical technique

in question. Use of pre-built software may not have identified some of the numerical difficulties

discussed below.

Numerical experiments found that the second-order central-upwind scheme requires a time

discretisation of the corresponding order. When the spatial and temporal discretisations are

inconsistent, spurious oscillations pollute the solution and the amplitude of these oscillations



ii

increases, as the computational grid is refined. The second-order time stepping method imple-

mented is less computationally efficient. Nevertheless the increase in accuracy and the inaccura-

cies of the first-order temporal discretisation justifies the increased computational effort.

A range of limiters were tested for the second-order central-upwind scheme. Of the six

limiters investigated, three produced extremely poor results when modelling flow over dry beds.

The alternative three limiters performed well in all situations, but underestimated the velocity of

the advancing wet of a dry dam-break. Further work is needed to find an appropriate method to

adjust the limiting procedure at wet and dry interfaces.

Employing the most accurate van Leer limiter, numerical approximations were compared

against three types of analytical solutions to establish the veracity of the model. Excellent res-

olution of shocks, rarefaction fans and steady flow over rapidly varying topography is obtained.

Further work to improve the simulation of the wetting and drying of topography is required. An

initial attempt, based on expressions relating fluid area to the free surface elevation in partially

wetted cells, did not provide an increase in accuracy. A more accurate prediction of the velocity

in partially wetted cells is needed.
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Chapter 1

Introduction

1.1 Motivation

Fluid mechanics, the study of the movement of fluid, can be used to describe and model a

large number of complex systems, from jet streams expelled from black holes to the flow of water

down the kitchen sink. The basic equations governing fluid motion are built on the principles of

conservation of mass, momentum and energy. Numerous variations of these equations can be

constructed from varying assumptions regarding the nature of the fluid, such as its viscosity and

compressibility, and the dimensions and properties of the domain in which the fluid is situated.

In fact it is often necessary to make limiting assumptions, that are acceptable for a particular

application, in order to obtain approximate descriptions of flow that allow tractable analytical

and numerical solutions.

The description of shallow water flow by what are known as the shallow water wave equa-

tions (SWWE) is one such approximation. These equations are used to represent the flow of

water in a region in which the horizontal dimension of the water body, say wave length, greatly

exceeds the depth. These equations arise from the basic equations of fluid mechanics for an

inviscid and incompressible fluid. Generally a two-dimensional approximation of flow is used

that assumes negligible vertical acceleration and a hydrostatic pressure distribution under which

pressure increases linearly with depth. If the flow is characterised by some vertical acceleration

then it is necessary to relax the hydrostatic pressure assumption. If a non-hydrostatic distribution

is assumed variations of the shallow water wave equations, known as Boussinesq equations, can

be obtained.

Shallow water flows are characterised by flow regions with a free surface, an impermeable

1



CHAPTER 1. INTRODUCTION 2

bottom topography, such as a sea floor, and horizontal velocity that dominates the flow field.

Flow may be generated by gravitational forces associated with sloped beds, wind that creates

stress on the free surface of the fluid or an applied pressure gradient, such as a tidal influence, a

disturbance in the impermeable bottom, say from an earthquake, or a combination of two or all

three.

The Shallow Water Wave equations have been used for many applications including:

• Dam Breaks — Water impoundment resulting from dam breaks poses a potential risk to

life and infrastructure. Such events are often characterised by rapidly varying flows and

shock waves. Zoppou and Roberts [60] use a shallow water model to simulate the sudden

collapse of supply reservoirs in urban areas.

• Tsunami Propagation — Tsunamis pose a large risk to coastal communities all over the

world. This has become agonizingly evident in the aftermath of the now-called Boxing-

day Tsunami of 2004. For these reasons there is an increased focus on tsunami hazard

mitigation (tsunami detection, forecasting and emergency preparedness) to limit loss of

life and economic fallout resulting from such an event [52]. The shallow water wave equa-

tions or the Boussinesq-type variations are common descriptions used to model tsunami

propagation [28, 56].

• Storm Surges — Storm surges are caused by the large wind velocities, pressure and high

tides associated with large storms, especially tropical cyclones. For similar reasons given

for tsunami events it is important to be able to model storm surges to identify areas of high

risk and areas that may be protected by artificial barriers such as break walls. Examples of

modelling storm surges can be found in [11, 17].

• Solute Transport — Prediction of solute transport concentrations in various fluid flows is

important for many environmental and industrial applications. When developing ecolog-

ical models of wetlands and estuaries information regarding the movement of pollutants

and other forms of macro solutes which are often food sources is invaluable. Chertock et

al. [12] detail the use of the shallow water wave equations for modelling the transport of

passive pollutants. Other examples of can be found in [18, 19]

• River Flows and Inundation — Flow in rivers over floodplains is very accurately repre-

sented by shallow water flow. Ogink et al. [42] simulate such flows to determine flow
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patterns and river heights during flooding. Goutal and Maurel [23] use the shallow water

flow theory to model steady flow in rivers.

• Ecological Models — Macro particles found in rivers and oceans are often food sources

for small marine animals. The concentration of these particles can thereby have an effect

on the population size and distribution of these organisms and in turn on the ecosystem as

a whole. Consequently shallow water modelling can be used to simulate the movement

of these particles and organisms and used to determine and predict important ecological

markers. Nixon and Noye [41], for example, use a shallow water model coupled with a

dispersion model to predict the distribution of prawn larvae in the Spencer Gulf.

The shallow water wave equations form a non-linear hyperbolic system. The equations often

admit discontinuous solutions even when the initial data is smooth and analytical solutions are

limited to very few idealised cases. Computational methods therefore must be used to model

most practical problems.

The majority of shallow water flow of practical interest is two-dimensional. However, two-

dimensional numerical models of these flows are more complex and difficult to implement than

the corresponding one-dimensional representations. Although few ‘real’ flows are truly one-

dimensional, most computational methods for simulating two-dimensional flows are strongly

based on the numerical techniques used to model one-dimensional flows [31]. In addition the

simpler representation of one-dimensional models allows easier identification of computational

issues that cause inaccurate simulation of flows, such as the violation of the entropy condition

and spurious oscillations in the solution. Consequently this thesis focuses almost entirely on

one-dimensional numerical techniques used to model shallow water flow.

1.2 Outline of the Thesis

The shallow water wave equations can be derived in a number of ways with varying initial as-

sumptions and mathematical complexity. Chapter 2 presents a derivation of the two-dimensional

shallow water wave equations. It aims to emphasise the important assumptions of shallow water

theory. The chapter is divided into three sections: (i) a derivation of the fundamental equa-

tions of continuity and motion for a perfect inviscid fluid; (ii) a derivation of the shallow water

wave equations from these fundamental equations; and (iii) a brief discussion of higher-order

Boussinesq-type equations also used to describe shallow water flow.
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Chapter 3 investigates the non-linear hyperbolic nature of the shallow water wave equations,

using one-dimensional flow as a concrete example. Particular attention is given to characteristic

theory, the Riemann problem and three idealised analytical solutions. Characteristic theory is

used to examine the propagation of information in shallow water and introduce principles ne-

cessitated by the subsequent discussion of the Riemann problem and exact solutions. The next

section describes the Riemann problem central to many hydrodynamical numerical techniques.

And the final section presents three analytical solutions describing: (i) flows resulting from dam-

breaks; (ii) oscillating planar flow in a parabolic canal; and (iii) steady flow over an obstacle.

These problems were selected to offer further insight into the behaviour of the shallow water

equations and provide means to establish the veracity of the numerical schemes presented later.

Due to the non-linear nature of the shallow water equations, numerical methods are required

to solve most practical problems. The numerical techniques used to simulate shallow water flow

fall into three categories: finite volume, finite element and spectral methods. The principles of

both finite volume and finite element methods are discussed in Chapter 4. A discussion of the

less popular spectral element methods is omitted here.

Chapter 5 develops a central-upwind Godunov-type finite volume method for solving the

one-dimensional shallow water wave equations, based on the work of Kurganov et al. [30]. The

scheme presented attempts to avoid some of the numerical difficulties inherent in the alternative

approaches discussed in Chapter 4. Much attention is given to slope limiters, fractional step

methods, temporal discretisation, and boundary conditions. Implementation considerations and

the extension of the central-upwind scheme to model two-dimensional flows are also considered.

Model performance is addressed in Chapter 6. Specifically the analytical solutions presented

in Chapter 3 are compared against the numerical approximations of the central-upwind method,

in order to establish the veracity of the model. Attention is given both to the rate at which

the numerical solution converges to the true solution and the robustness of certain frequently-

used slope limiters. This chapter also addresses the need for consistency in the order of spatial

and temporal discretisations of the central-upwind scheme and the resulting trade-off between

accuracy and performance.

Finally, in Chapter 7, we attempt to improve the procedure used to model the wetting and

drying of varying topography. The method presented is based on the work of Begnudelli and

Sanders [3] and uses equations that relate the fluid area in a one-dimensional cell to the free

surface in that cell.

Conclusions are presented in Chapter 8.



Chapter 2

Deriving The Shallow Water Wave

Equations

Literature on the derivation of both the fundamental equations of fluid mechanics and the

shallow water wave equations is comprehensive. Numerous approaches have been used, some

adopting a more rigorous mathematical approach, others appealing to physical intuition and

many more adopting a combination of both these methods. This chapter presents a derivation of

the two-dimensional shallow water wave equations in a manner hoped to highlight the important

assumptions required, that appeals to both the mathematical and physically minded, and best

suits the demands of the numerical methods discussed later in this thesis.

Specifically this chapter first derives the fundamental equations of continuity and motion

for a perfect inviscid fluid, which constitute two of the three well-known Euler equations. The

Euler equation based on the conservation of energy is also presented, however its derivation is

neglected as it is not needed in the derivation of the shallow water wave equations found here.

From these two equations the various assumptions of shallow water theory are discussed and

used to construct the depth-averaged shallow water equations for one-dimensional flow, in an

open channel of regular cross-section with a horizontal bed. The last section of this chapter

relaxes some of the assumptions of shallow water theory and introduces the resulting Boussiensq

equations.

5
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2.1 The Fundamental Equations of Fluid Mechanics

The governing equations of fluid flow, including shallow water flow, are based on the conser-

vation of mass, momentum, and energy and the second law of thermodynamics. The principle

of conservation requires that the three aforementioned fundamental quantities are neither created

nor destroyed. The consideration of the conservation of mass is simple but the conservation of

energy and momentum is more difficult, owing to the interrelationship between these quantities

and the numerous phenomena that influence these quantities. For simplicity the following dis-

cussion, as with many classical texts [31, 13], begins by eliminating all influences on momentum

and energy, save for redistribution and pressure, by initially only considering inviscid flows of

perfect fluids free of forces except for pressure. Various forces can then be added to describe

more complex flows.

The equation of motion and continuity are generally derived by adopting either the La-

grangian or Eulerian coordinate systems. The Lagrangian approach uses an evolving coordinate

system that follows the trajectory of each fluid particle within a chosen region as it flows down-

stream. The boundary of this region continually evolves so as not to permit any fluid particle

crossing it. Intuitively one can see that this allows a simple method of conserving mass and

momentum within these regions. The Lagrangian method gives rise to equations that specify the

location and the basic flow quantities, such as velocity and pressure, of each fluid particle within

the flow field. This means that the resulting equations are expressed in basic flow quantities,

such as velocity and pressure, of each fluid particle within the flow field in a coordinate system

that moves with the fluid flow. In contrast the Eulerian approach describes fluid motion in terms

of the fluxes of the various fluid quantities across the surface of a control volume that is fixed

with respect to the coordinate system being used. This method does not consider the position of

individual particles occupying a certain space, but rather evaluates basic flow quantities, such as

mass and momentum, as a function of the coordinates of a point and time [37].

This chapter adopts the Lagrangian approach to derive the equation of continuity and the

Eulerian approach to construct the equation of motion to emphasize the inherent differences in

these two approaches and to enable better understanding of the Eulerian and Lagrangian numer-

ical methods discussed in Section 4.
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2.1.1 The Conservation of Mass

The conservation of mass is the first principle used to develop the basic equations of fluid

mechanics. Simply the conservation of mass implies that the total mass of a closed system in a

region Ω is constant and mass can neither be created nor destroyed.

Let us adopt the Eulerian approach and consider a region in space Ω ∈ R
3 in which a body

of fluid is situated. Employing this method we denote the velocity of the fluid moving through

the point ~x ∈ Ω by ~u(~x, t) := (u, v, w). In addition assume that for each time t the fluid has a

well-defined mass density ρ(~x, t), where the functions ~u and ρ exist and are smooth enough so

that the operations of calculus used in this thesis can be performed on them.

For any subregion W0 ∈ Ω, fixed in space with volume W0, the mass of fluid in W0 at time t

is given by

mt(W0) =

∫

W0

ρ dV

Note the subscript t does not denote differentiation. The rate of change of mass in W0 is

d

dt
mt(W0) =

d

dt

∫

W0

ρ dV (2.1)

We must now consider the state of the fluid a short period in time later. At this time some of

the fluid that occupied the region at time t will have passed out of W0 and a portion of the fluid

originally outside the region at time t will replace what has left.

Consider an infinitesimally small region on the surface ∂W0 of the region W0, as shown in

Figure 2.1. The outflow of mass from W0 is a function only of the velocity of the fluid on the

surface ∂W0, because mass is advected with the fluid leaving W0. So the mass that flows out

from a small area on the surface of W0 in time ∆t is ρ~u · ~n dA∆t. Here ~n is the outward unit

normal to the area dA. Summing all such areas over the entire surface yields an expression for

the rate of change of mass crossing ∂W0 in the outward direction:

dmt

dt
= lim

∆t→∞

mout − min

∆t
=

1

∆t

∫

∂W0

ρ~u · ~n∆t dA (2.2)

Conservation of mass requires that the the rate of change of the mass of W0 must be equal to the

rate at which mass passes through ∂W0 in the inward direction. That is

∫

W0

∂

∂t
ρ dV = −

∫

∂W0

ρ~u · ~n dA (2.3)
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dA

~n

~u

Figure 2.1: The mass outflow from an incremental area on the region W0 over a small period in

time ∆t

Recall that the region W0 is fixed in space and so the limits of integration of the integral on the

left hand side do not change with time. This means that the derivative sign can be placed within

the integrand.

Using the divergence theorem

∫

V

~∇ · ~u dV =

∫

∂V

~u · ~n dA (2.4)

equation (2.3) becomes

∫

W0

[

∂

∂t
ρ + ~∇ · (ρ~u)

]

dV = 0 (2.5)

Thus far the limits of the control volume have not been defined. So the control volume can be

chosen as any non-zero region of the integrand, which violates (2.5). Therefore the integrand

must be zero everywhere and

1

ρ

∂ρ

∂t
+

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.6)

Equation (2.6) is known as Euler’s equation of continuity.

2.1.2 The Conservation of Momentum

Now let us set aside the Eulerian approach and adopt the Lagrangian coordinate system to

construct Euler’s equations of motion from the principle of conservation of momentum. To do

this we must define some new notation. The particles of fluid within the domain travel well-

defined trajectories. Let ~φ(~x, t) be the trajectory followed by a particle that originated from the
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position ~x0 ∈ Ω at time t = 0. This particle travels with the velocity ~u(~x, t) = ∂
∂t

~φ(~x0, t) as it

moves through the point ~x ∈ Ω at time t. Again assume that for all t, that is for 0 ≤ t ≤ ∞, the

fluid within the domain has a well-defined mass density ρ(~x, t).

W0 Wt

Ω

u(~x, t)

t = 0 t

~x0

~x0

Figure 2.2: The trajectory of particles, initially contained in a region W0 at t = 0, through a

larger region Ω flowing with velocity u(~x, t). Wt is an image of W0 at some t > 0.

A Lagrangian coordinate system follows the trajectory of each fluid particle within a chosen

region W (t) as it flows downstream. The boundary of this region continually evolves so as not

to permit any fluid particle crossing it. Refer to Figure 2.2. This means, that unlike the region

W0 considered when using an Eulerian coordinate system, W must be a function of time and the

total momentum in a region Wt is given by

∫

Wt

ρ(~x, t)~u(~x, t) d~x

We will follow this region as it evolves with the velocity field of the fluid, defining Wt so that no

fluid particles enter or leave the region at any time.

Newton’s law of motion states that the rate of change in momentum is equal to the applied

force ~F . That is

~F =
d

dt

∫

Wt

ρ(~x, t)~u(~x, t) d~x

and by changing variables we see that

~F =

∫

W0

d

dt
ρ(~φ(~x0, t), t)~u((~x0, t), t)J(~x0, t) d~x0

=

∫

W0

J(~x0, t)
d

dt
ρ~u d~x0 +

∫

W0

ρ~u
∂

∂t
J(~x0, t) d~x0 (2.7)
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Here J = det(∇~φ) is the Jacobian of the transformation ~φ and we have dropped the arguments

of u and ρ for clarity. Whenever associated with J(~x0, t) these two quantities are functions of

(~φ(~x0, t), t). Otherwise they are functions of (x, t).

To simplify this equation consider the following lemma provided by Chorin and Marsden

[13] that states

Lemma 2.1.1.
∂

∂t
J(~x0, t) = J(~x0, t)∇ · u(~φ(~x0, t), t)

Applying this result and the chain rule to (2.7) yields

~F =

∫

W0

J(~x0, t)
∂

∂t
ρ~u d~x0 +

∫

W0

~u · ∇(ρ~u)J(~x0, t) d~x0

+

∫

W0

(ρ~u∇ · ~u)J(~x0, t) d~x0

Noting that

~u · ∇(ρ~u) + ρ~u∇ · ~u = u
∂ρ~u

∂x
+ v

∂ρ~u

∂y
+ w

∂ρ~u

∂z
+ ρ~u

∂u

∂x
+ ρ~u

∂v

∂y
+ ρ~u

∂w

∂z

=
∂ρ~u~u

∂x
+

∂ρ~u~u

∂y
+

∂ρ~u~u

∂z

= ∇ · (ρ~u~u)

where ~u~u is a dyadic product (uiuj) we obtain

~F =

∫

W0

[

∂

∂t
ρ~u + ∇ · ρ~u~u

]

J(~x0, t) d~x0

=

∫

Wt

[

∂

∂t
ρ~u + ∇ · ρ~u~u

]

d~x

Using the continuity equation we see that

∂

∂t
ρ~u + ∇ · (ρ~u~u) =

∂

∂t
ρui +

∂

∂xj

ρuiuj

= ui
∂ρ

∂t
+ ρ

∂ui

∂t
+ ρuj

∂ui

∂xj

+ ui
∂

∂x j

ρuj (2.8)

= ρ
∂ui

∂t
+ ρuj

∂ui

∂xj

= ρ
D

Dt
~u (2.9)
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where D
Dt

is the material derivative which takes into account the fact the fluid is moving and the

positions of the particles within the fluid change with time.

So finally

~F =

∫

Wt

ρ
D

Dt
~u d~x

The forces acting on a region of fluid are of only three types. The first is the pressure force acting

on the boundary of a region of fluid. The second is the external or body forces which exert a

force per unit volume on the fluid, and the third type are known as stress forces that act on the

surface of the fluid. For now we will assume that there are no stress forces acting on our fluid.

To evaluate the pressure force exerted across the surface of a region of fluid let us again

consider a region of fluid W (t) at time t contained by the surface ∂W . Now define S to be an

infinitessimally small area on ∂W (t). The pressure force on S per unit area in the direction of the

outward unit normal ~n is p~n. The total force ~Fp exerted on W (t) by pressure p across its surface

~Fp is obtained by summing all such areas over the entire surface. That is

~Fp = −
∫

∂Wt

p~n dA = −
∫

Wt

∇p dV

We must also consider the total body force acting on Wt is given by

Fb =

∫

Wt

ρ~b dV

where b is the body force per unit mass. Putting all this together we obtain the equations of

motion

∫

Wt

[

∂

∂t
ρ~u + ρ(~u · ~∇)~u

]

dV = −
∫

W (t)

[

~∇ p + ρ~b
]

dV

Finally assuming that gravity ~g provides the only body force acting on our fluid (i.e. ~b = ~g)

Euler’s equations of motion in differentiable form are, in the x-direction,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(2.10)

in the y-direction
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
(2.11)

and in the z-direction
∂v

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g (2.12)
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2.1.3 Conservation of Energy

Conservation of energy states that the total amount of energy (including potential energy) in

an isolated system remains constant. An increase in energy in space and time must be accompa-

nied by an equal decrease in energy at another point. In one dimension the change in total energy

in [x1, x2] in the interval [t1, t2] is equal to the net energy flow through the boundaries of [x1, x2]

over the same time plus the net energy change due to pressure on the boundaries of [x1, x2]. That

is

∫ x2

x1

[ρ(x, t2)eT (x, t2) − ρ(x, t1)eT (x, t1)] dx =

−
∫ t2

t1

[ρ(x2, t)u(x2, t)eT (x2, t) − ρ(x1, t)u(x1, t)eT (x1, t)] dt

−
∫ t2

t1

[p(x2, t)u(x2, t) − p(x1, t)u(x1, t)] dt

where eT (x, t) is the total energy per unit mass, ρ(x, t)eT (x, t) is the total energy per unit volume

and ρ(x, t)u(x, t)eT (x, t) is the instantaneous total energy flux.

2.2 The Depth-Averaged Shallow Water Wave Equations

There are several approaches that can be used to develop the depth-averaged shallow water

wave equations. The following most closely follows the text of Ligget [37] which begins with the

aforementioned hydrodynamic equations to stress the necessary assumptions and approximations

of shallow water theory. An extended discussion is given to the hydrostatic pressure assumption,

essential to shallow water theory, and the appropriate boundary conditions needed to derive the

equations and applying a hydrostatic pressure assumption. The limits of integration used to

average the flow in shallow water are also changed to best suit the numerical method discussed

later.

Shallow water theory makes three important assumptions regarding the nature of the fluid

being studied. The fluid is assumed to be incompressible, irrotational and inviscid. The latter two

assumptions were made when deriving Euler’s equations. The construction of the depth-averaged

shallow water equations also requires three main assumptions about the spatial domain. Shallow

water flows only exist in bodies of fluid with a vertical extent D of Ω that is ‘much smaller’ than

the horizontal extent L. By ‘much smaller’ we mean the ratio of horizontal and vertical extent
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h(t, x, y)

b(x, y)

z

y

x

z = 0

free surface

bottom topography

Figure 2.3: The Cartesian coordinate system used when defining the shallow water wave equa-

tions. b(x, y) is the elevation of the impermeable bottom topography and h(t, x, y) is the depth

of the water.

is much smaller than one. That is ǫ = D/L ≪ 1. In addition pressure is assumed to increase

linearly with depth and there is assumed to be negligible vertical acceleration within the fluid.

2.2.1 Coordinate System

When dealing with the shallow water wave equations the “β-plane” coordinate system is

usually assumed [32]. In such a situation the x-y plane is taken tangent to the Earth at the

latitude under consideration. The x-axis is taken in the direction of the Earth’s latitude and the

y-axis in the direction of the Earth’s longitude. The z-axis lies along the outward normal to the

Earth’s surface. The free surface occurs at z = b + h where z ∈ [b(x, y), b(x, y) + h(t, x, y)].

Here b is the elevation of the impermeable bottom of the domain relative to a particular datum,

h is the depth of water , and t is the non-negative time variable — see Figure 2.3. Ignoring the

curvature of the Earth the plane z = 0 is assumed to be the free surface of the fluid body when it

is at rest.

The domain Ω consists of a single region, such as an ocean or experimental fluid tank. The

vertical boundaries of this region are denoted by ∂Ω and consist of “open” boundaries, for which

the inflow and outflow must be specified, or “closed” boundaries such as a solid wall.
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2.2.2 Boundary Conditions

Before deriving the shallow water wave equations we must first specify the boundary condi-

tions of the problem domain. There are three types of boundaries that must be considered: the

“open” or “closed” vertical surfaces of the domain ∂Ω, the free surface, and the impermeable

bottom of the domain.

The boundary conditions on ∂Ω will not be dealt with in this section, as the conditions on

these boundaries are problem-dependent and do not need to be taken into account when deriving

the shallow water wave equations. Initial conditions are also problem dependent and as such are

not addressed here.

Consider the free surface defined by the equation

z = f(x, y, t)

The velocity of this free surface is given by ~v = (0, 0, ∂f/∂t) and the velocity of a particle within

the fluid is given by ~u = (u, v, w). It is reasonable to assume that fluid particles cannot cross the

free surface of Ω so that

~v · ~n = ~u · ~n

where ~n is the unit outward normal vector to the free surface given by

~n =

(

−∂f

∂x
,−∂f

∂y
, 1

)

Equating terms yields
∂f

∂t
= −u

∂f

∂x
− v

∂f

∂y
+ w

Noting that f(x, y, t) = b(x, y) + h(x, y, t) gives rise to the surface condition

∂h

∂t
+ û

∂

∂x
(b + h) + v̂

∂

∂y
(b + h) − ŵ = 0 (2.13)

Similarly fluid cannot cross the impermeable bottom of Ω so

ŭ
∂b

∂x
+ v̆

∂b

∂y
− w̆ = 0 (2.14)

Here the hat indicates that the quantities are evaluated at the free surface of the fluid (z = b + h)

and the breve indicates that the quantities are evaluated at the impermeable bottom of Ω (z = b).

We have also assumed a non-uniform vertical velocity distribution.

Across the impermeable bottom the “non-slip” condition can be applied, that is
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ŭ = 0 , v̆ = 0 , w̆ = 0

If friction had an important effect on flow then this last condition would need to be changed and

the resulting formulation of the equations would differ sightly.

2.2.3 Conservation of Mass

Consider the assumption that the density of the fluid is constant throughout Ω. We then note

that the continuity equation (2.6) contains a substantial derivative that shows the rate of change

in reference to an individual particle. The physical interpretation of the equation implies that the

change of density of a fluid particle is equal to the expansion of the fluid. For an incompressible

fluid, the change in the density of a fluid particle is zero — i.e. dρ/dt = 0. Using this result (2.6)

becomes

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.15)

Using the coordinate system defined in Section 2.2.1 and integrating this equation over the verti-

cal extent of the fluid yields

∫ b+h

b

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

dz = 0 (2.16)

where ~u(~x, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)). Next we use need to reverse the order

of integration and differentiation in (2.16).

Theorem 2.2.1. Leibniz’ Theorem

∂

∂t

∫ b(y,t)

a(y,t)

f(x, y, t) dx =

∫ b(y,t)

a(y,t)

∂f

∂t
dx − f(a, y, t)

∂a

∂t
+ f (b, y, t)

∂b

∂t

Note again that we will neglect the arguments of functions in the following to improve clarity.

Arguments are still included when clarification may be needed. Applying Leibniz’ theorem
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∫ b+h

b

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

dz =
∂

∂x

∫ b+h

b

u dz − û
∂

∂x
(b + h) + ŭ

∂b

∂x

+
∂

∂y

∫ b+h

b

v dz − v̂
∂

∂y
(b + h) + v̆

∂b

∂y

+

∫ b+h

b

∂w

∂z
dz

= 0 (2.17)

Now define the average velocity over the depth of vertical extent of Ω in the x and y directions

to be

ū =
1

h

∫ b+h

b

u dz and v̄ =
1

h

∫ b+h

b

v dz

respectively. Substituting these quantities into (2.17) yields

∫ b+h

b

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

dz =
∂

∂x
hū +

∂

∂y
hv̄ − û

∂

∂x
(b + h) − v̂

∂

∂y
(b + h)

+ ŭ
∂b

∂x
+ v̆

∂b

∂y
+ ŵ − w̆

= 0

Substituting in the boundary conditions at the surface (2.13) and along the bottom of the domain

(2.14), the above equation simplifies to give the first of three two-dimensional depth-averaged

shallow water wave equations

∂

∂t
h +

∂

∂x
hū +

∂

∂y
hv̄ = 0 (2.18)

2.2.4 Conservation of Momentum

Euler’s equations of motion can be used to obtain the remaining two-dimensional shallow

water wave equations. Integrating the momentum equation in the x-direction (2.10) over the

vertical extent of the fluid yields

∫ b+h

b

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+

1

ρ

∂p

∂x

)

dz = 0 (2.19)
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Using (2.15)
∂u2

∂x
+

∂uv

∂y
+

∂uw

∂z
= u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

and substituting this expression into (2.19) yields

∫ b+h

b

(

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
+

∂uw

∂z
+

1

ρ

∂p

∂x

)

dz = 0 (2.20)

For ease of representation let us evaluate each term of the integrand separately. Starting with the

time derivative term we use Leibniz’s’ theorem to obtain

∫ b+h

b

∂u

∂t
dz =

∂

∂t

∫ b+h

b

u dz + ŭ
∂b

∂t
− û

∂

∂t
(b + h)

=
∂

∂t

∫ b+h

b

u dz − û
∂

∂t
(b + h)

=
∂

∂t
(ūh) − û

∂

∂t
h

Similarly

∫ b+h

b

∂

∂x
u2 dz =

∂

∂x

∫ b+h

b

u2 dz + ŭ2 ∂b

∂x
− û2 ∂

∂x
(b + h) (2.21)

By averaging the fluid velocities in the vertical direction we can relax the assumption that limits

the shallow water equations to fluid flow with no vertical acceleration. However by defining the

above quantities the shallow water wave equations no longer conserve momentum exactly. With

this in mind let us define the momentum correlation factors

βxx =

∫ b+h

b
u2 dz

ū2h
and βxy =

∫ b+h

b
uv dz

ūv̄h

which enables us to simplify (2.21) and the similar equation of the ∂uv
∂y

term of (2.20). Thus

∫ b+h

b

∂

∂x
u2 dz =

∂

∂x
(βxxū

2h) + ŭ2 ∂b

∂x
− û2 ∂

∂x
(b + h) (2.22)

and

∫ b+h

b

∂

∂x
uv dz =

∂

∂y
(βxyūv̄h) + ŭv̆

∂b

∂y
− û v̂

∂

∂y
(b + h) (2.23)

The third term of (2.20 is)
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∫ b+h

b

∂

∂x
uw dz = ûŵ − ŭw̆ (2.24)

We must now make the important assumption that the pressure of the fluid within Ω increases

linearly with depth. That is

p = ρg(z1 − z0)

where z1 − z0 is the vertical distance between two water levels. This condition is known as the

hydrostatic pressure assumption and is derived from the basic premise of shallow water theory

that restricts flow to situations where the fluid depth D is much smaller than the characteristic

horizontal dimensions L. That is ǫ = D/L ≪ 1.

Let us denote U and W to be the characteristic fluid velocities in the horizontal x − y plane

and in the vertical direction respectively, and define the following dimensionless quantities ac-

cordingly:

x⋆ =
x

L
y⋆ =

y

L
z⋆ =

z

D
u⋆ =

u

U
v⋆ =

v

U
w⋆ =

w

W

t⋆ =
Ut

L
p⋆ =

p

ρU2
g⋆ =

gU2

D

Substituting these dimensionless quantities into the continuity equation gives

U

L

∂u⋆

∂x⋆
+

U

L

∂v⋆

∂y⋆
+

W

D

∂w⋆

∂z⋆
= 0

For this equation to be satisfied W ≈ O(UD/L). To show that pressure is hydrostatic we must

consider the dimensionless form of the vertical momentum equation

U2D

L2

(

∂w⋆

∂t⋆
+ u⋆∂w⋆

∂x⋆
+ v⋆∂w⋆

∂y⋆
+ w⋆∂w⋆

∂z⋆

)

= −U2

D

∂p⋆

∂z⋆
− D

U2
g⋆

Multiplying through by D/U2 yields

D2

L2

(

∂w⋆

∂t⋆
+ u⋆∂w⋆

∂x⋆
+ v⋆∂w⋆

∂y⋆
+ w⋆∂w⋆

∂z⋆

)

= −∂p⋆

∂z⋆
− D2

U4
g⋆ (2.25)

All the terms on the left hand side of (2.25) are all of order ǫ2 = (D/L)2 and can be neglected.

When observing shallow water flow in an ocean with a characteristic depth of 5 × 103m and a

characteristic width of 1× 107m, these terms are of the order 10−8. This means that the pressure

derivative can be approximated as
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∂p

∂z
= −ρg

Integrating from the surface to some depth z gives

p = ρg(b + h − z) + p(t, x, y, b + h)

where p(t, x, y, b + h) is the pressure at the surface of the free surface of the fluid. Only the

gradient components of the pressure appear in the equations of motion. So assuming that the

atmospheric pressure is constant at the surface we can choose this pressure to be zero without

complication. We have now arrived at the hydrostatic pressure assumption which states that at

any vertical elevation within the fluid z the pressure is given by

p = ρg(b + h − z)

Using this result we can now integrate the last term of (2.20) to obtain

∫ b+h

b

∂p

∂x
dz = ρg

∫ b+h

b

∂

∂x
(h + b − z) dz

= ρg

(

∂

∂x

∫ b+h

b

(h + b − z) dz + h
∂b

∂x

)

= ρg

(

1

2

∂

∂x
h2 + h

∂b

∂x

)

(2.26)

Substituting (2.22), (2.23), (2.24), and (2.26) into (2.20) yields

∂

∂t
(ūh) − û

∂h

∂t
+

∂

∂x
(βxxū

2h) + ŭ2 ∂b

∂x
− û2 ∂

∂x
(b + h)

+
∂

∂y
(βxyūv̄h) + ŭv̆

∂b

∂y
− ûv̂

∂

∂y
(b + h) + ûŵ − ŭw̆

+ g

(

1

2

∂

∂x
h2 + h

∂b

∂x

)

= 0

By applying the boundary conditions at the free surface (2.13) and the impermeable bottom

(2.14) we obtain

∂

∂t
(ūh) +

∂

∂x
(βxxū

2h) +
∂

∂y
(βxyūv̄h) + g

1

2

∂h2

∂x
= −gh

∂b

∂x

Setting the momentum correlation factors to unity yields
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∂

∂t
(ūh) +

∂

∂x
(ū2h) +

∂

∂y
(ūv̄h) + g

1

2

∂h2

∂x
= −gh

∂b

∂x
(2.27)

and

∂

∂t
(ūh) +

∂

∂x
(ūv̄h) +

∂

∂y
(v̄2h) + g

1

2

∂h2

∂y
= −gh

∂b

∂y
(2.28)

These two equations in combination with (2.18) constitute one form of the depth-averaged shal-

low water wave equations. By setting the momentum correlation factors to one we have implicitly

made the assumption that the horizontal velocities are uniform throughout the depth of the fluid.

Nevertheless these correlation factors can take on other values and become very important when

considering non-uniform vertical velocity distributions [29].

The exact nature of the shallow water wave equations depends on the number and types of

forces assumed to affect shallow water flow. Here we have only considered the influence of

gravity on the motion of fluids. However many other forces affect shallow water flow including

friction, wind shear, atmospheric pressure gradients, and Coriolis. Frequently terms are simply

added to the right hand side of (2.27) and (2.28) to model the effects of these forces. For example

Zoppou and Roberts [61] add an additional source term to the right hand side of(2.27)

Sfx =
uη

√
u2 + v2

h4/3

and similarly to (2.28)

Sfy =
vη

√
u2 + v2

h4/3

to model flow affected by friction. Here η is the Manning resistance coefficient. The derivation

and proprieties of these terms and other similar terms will not be considered in this thesis. In-

stead, throughout the remainder of this thesis we will consider the general form of the shallow

water wave equations

∂

∂t









h

uh

vh









+
∂

∂x









uh

u2h + gh2/2

uvh









+
∂

∂y









vh

uvh

v2h + gh2/2









= S (2.29)
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where S is a generic source term representing the external forces affecting shallow water flow

and is given by

S =









0

−ghbx

−ghby









(2.30)

unless otherwise stated.

2.3 Boussinesq-Type Equations

The Boussinesq equations are an extension of the shallow water wave equations. As stated

previously, depth-averaged shallow water theory assumes that the ratio of water depth to wave-

length is much less than one and that there is a hydrostatic pressure distribution and negligible

vertical acceleration. Boussinesq descriptions of shallow water flow relax the two latter assump-

tions and weaken the first so that they can be used in slightly deeper water and rapidly varying

flows.

There is, however, no unique Boussinesq equation. Many different forms of the equations

can be derived based on varying factors regarding the choice of horizontal velocity variable to

be used, the types of equations used in the derivation process, and the fact that spatial and time

derivatives can be to an extent interchanged due to linear theory.

Shocks describe the situation where the fluid motion undergoes a sudden transition in level

between two different uniform flows of water. Both the shallow water and Boussinesq equations

can be used to model these discontinuous flows, but only the latter can reflect the observed os-

cillations near the discontinuity. Generally it does not matter that the shallow water equations

do not capture these oscillations as the behaviour of surface waves near this region is not impor-

tant to the prediction of the downstream flow or the shock front. However in some cases these

’ripples’ may be important and the Boussinesq equations (and Euler equations) provide the only

means of studying this phenomenon.

The following one-dimensional equations are widely considered as the ‘standard form’ of the

Boussinesq equations and were derived by Peregrine [44] in 1967

∂h

∂t
+

∂

∂x
(hū) = 0

∂ū

∂t
+ ū

∂ū

∂x
− h2

3

∂3ū

∂x2∂t
= −g

∂

∂x
(b + h)
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These equations use the depth-averaged velocity ū but are only applicable to a restricted set

of conditions. Much work has been undertaken to extend these equations to achieve various goals

such as removing the flat bed restriction of Peregrine’s equations. A number of enhanced and

higher-order Boussinesq equations have been formulated to improve both the linear and nonlinear

properties of the equations and various numerical techniques have been employed to solve these

equations [38, 1, 21]. In general numerical modelling of Boussinesq equations is more difficult

than the modelling of the shallow water equations because of their added complexity.



Chapter 3

Properties of the Shallow Water Wave

Equations

This chapter investigates the important mathematical properties of the shallow water wave

equations. The following is aimed to provide insight into the behaviour of the shallow water

equation and introduce concepts central to the numerical schemes presented in later chapters. In

particular we analyse the characteristic structure of the shallow water wave equations and study

solutions of the Riemann problem which are central to many numerical methods. The remainder

of this chapter is devoted to developing a number of analytical solutions that are used to establish

the veracity of numerical schemes in Chapter 6.

3.1 Behaviour of the Shallow Water Wave Equations

The general conservative form of the one-dimensional shallow water wave equations is given

by
∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = S (3.1)

where q is the vector of conserved variables, f is the flux vector in the x direction and S represents

the source vector. The vectors q and f can be expressed in terms of the primary variables, u and

h, as

q =

[

h

uh

]

, f =

[

uh

u2h + gh2/2

]

(3.2)

23



CHAPTER 3. PROPERTIES OF THE SWWE 24

Here u is the x component of the depth-averaged fluid velocity, h is the water depth, and g is the

acceleration due to gravity. Following the derivation in Chapter 2 the source term S is given by

S =

[

0

ghS0x

]

(3.3)

where S0 is the bed slope. This source term can be modified to include other driving forces such

as friction and wind shear. However let us temporarily neglect the source terms and restrict our

analysis to the homogeneous system

qt + f(q)x = 0 (3.4)

Alternatively these equations can be written in the quasilinear form

qt + f ′(q)qx = 0 (3.5)

where the Jacobian matrix f ′(q) of f with respect to q is

f ′(q) =

[

0 1

−u2 + gh 2u

]

The homogeneous system (3.4) is strictly hyperbolic since the Jacobian matrix f ′(q) is diag-

onalisable and has real distinct eigenvalues

λ1 = u −
√

gh and λ2 = u +
√

gh

with the corresponding eigenvectors

r1 =

[

1

u −
√

gh

]

, r2 =

[

1

u +
√

gh

]

For hyperbolic systems such as (3.4) these eigenvalues correspond to the propagation velocities

of the various components of the wave and are often called characteristic speeds. In the case

of shallow water flow these velocities are dependent on the velocity of the flow u and the depth

of the water h. Specifically the eigenvalues correspond to the gradients of the two families of

characteristic curves associated with shallow water flow

C1 :
dx

dt
= u −

√

gh and C2 :
dx

dt
= u +

√

gh (3.6)

The curvature of these curves depends on the point through which these curves pass at t = 0.

The curves are constant in regions where u and h are constant. For a system of m equations there
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will be m characteristic families. The functions u ± 2
√

gh are constant along these curves and

are known as Riemann invariants and give rise to the following relations

u − 2
√

gh = k1 and u + 2
√

gh = k2 (3.7)

which for constants m, k1, and k2 are constant along the curves C1 and C2, respectively. Given

an initial condition for u and h, (3.6) and (3.7) can be completely determined to give a solution

to the problem. Note that k1 and k2 will be different on curves originating at different points in

space at t = 0.

Consider a one-dimensional problem for which u(x, t) and h(x, t) are known for all values

of x at t = 0. To determine the solution for t > 0 assume that

u(x, 0) = d(x)
√

gh(x, 0) = f(x)

where u and f are known functions. We can now approximate the values of u and gh at some

small time in the future ∆t. This is achieved (Figure 3.1) by selecting points, 1, 2, 3 and 4,

on the x-axis at a small distance ∆x apart, for which u and gh are known, and calculating the

slopes of C1 and C2. Straight line segments can then be drawn tangentially to the characteristic

curves at these points until they intersect at the points 5, 6 and 7. These points will provide

good approximations of the position of the intersections of the characteristics, provided ∆x is

sufficiently small. From (3.7) we can determine the values of x and t at points 5, 6 and 7 and

approximate u and gh using

u − 2
√

gh = d − 2f

u + 2
√

gh = d + 2f

along C1 and C2 respectively. Once u and gh are known the slopes of C1 and C2 can be deter-

mined from (3.6) and the previous process can be repeated to obtain estimates of points 8 and 9

(see Figure 3.2). Now consider the point 10 fixed in space and time. The above discussion has

shown that the solution q(X, T ) at this point can only be influenced by points at earlier times, par-

ticularly the points 1, 2, 3 and 4. Furthermore point 10 = (X, t) is not influenced by all points at

these earlier times because information only travels at finite wave speeds. Consequently a point

in the x-t plane is only influenced by points in a finite domain of dependence. For non-linear

shallow water equations the domain of dependence is bounded by the waves with the greatest and
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x

t
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C1 C2
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C1

C1

5

6

7

Figure 3.1: Linear approximations of characteristic curves.

least velocities. Specifically the solution q(X, T ) depends only on the initial data in the interval

[X − λ2T, X − λ1T ]. In a similar manner a point in the x-t plane can only influence points at

later times. The range of influence of this point is again bounded by the characteristic curves

corresponding to the smallest and largest eigenvalues. The domain of dependence and the range

of influence of a point (X, T ) are shown in Figure 3.3.

It can be proved mathematically that as ∆x → 0 the aforementioned process will converge to

the exact solution corresponding to the given initial conditions. It must be noted, however, that

we have assumed that the two families of characteristics form a regular curvilinear coordinate

system over the entire x-t plane. As such we must consider when and where these characteristics

cease to have this property and the physical meaning of this phenomenon, which leads neatly to

the Rankine-Hugoniot and entropy conditions.

3.1.1 The Rankine-Hugoniot Condition

In deriving the partial differential equation form of the shallow water equations (3.1) the

solution was assumed to be smooth. This is often not the case so we must use the integral

form of the conservation law. When two or more characteristics of the same family intersect

a discontinuity known as a shock will occur. The speed of the shock s(t) can be determined
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Figure 3.2: Estimating the solution of the shallow water wave equations using finite differences

approximations of characteristic curves.

at any time in terms of the states ql(t) and qr(t) immediately to the left and right of the shock

respectively.

As a solution containing a discontinuity evolves the shock will propagate with some speed

s(t). At any time t this shock speed can be determined in terms of the states ql(t) and qr(t)

immediately to the left and the right of the shock. Consider a small region in space [x1, x1 +∆x]

and a small time period [tn, tn + ∆t]. In this domain the shock speed and the states to the left

and right of the shock are constant (refer to Figure 3.4). Applying the conservation law in this

equation yields

∫ x1+∆x

x1

q(x, t1 + ∆t) dx −
∫ x1+∆x

x1

q(x, t1) dx

=

∫ t1+∆t

t1

f(q(x1, t)) dt−
∫ t1+∆t

t1

f(q(x1 + ∆x, t)) dt

Because q is essentially constant on each side of the shock in the rectangular domain, the fluxes

to the left and right of the shock are also constant and the above equation becomes

∆x(ql − qr) = ∆t(f(ql) − f(qr))
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X − λ2T X − λ1T

(X, T )

x

t

Domain of Dependence

Range of Influence

Figure 3.3: The domain of dependence and range of influence of the point (X, T ) for a non-linear

hyperbolic system of two equations with λ1 < 0 < λ2.

Since the shock is propagating at speed s, then ∆x = s∆t. Using this definition, dividing by ∆t

and taking the limit as ∆t → 0 we can show that any shock must satisfy the condition

s(qr − ql) = f(qr) − f(ql) (3.8)

This is known as the Rankine-Hugoniot condition and any solution that satisfies this condition

across a shock is a weak solution of the conservation law.

3.1.2 The Lax Entropy Condition

The Rankine-Hugoniot condition does not guarantee unique solutions that are physically

correct. In these situations additional constraints, often referred to as admissibility conditions,

must be added [34]. The Lax entropy condition can be used to determine whether a weak solution

is indeed the physically correct solution. The Lax entropy condition is satisfied if characteristics

converge such that, for the 1-shock,

λ1(ql) > s > λ1(qr)
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q ≈ ql

q ≈ qr

x1

t1

t1 + ∆t

x + ∆t

Shock with speed s

Figure 3.4: The infinitessimal region in the x-t plane used to derive the Rankine-Hugoniot con-

dition.

and, for the two shock,

λ2(ql) > s > λ2(qr) (3.9)

If the Rankine-Hugoniot and Lax Entropy conditions hold, the energy in the fluid will de-

crease across the shock ensuring is physically correct.

3.2 The Riemann Problem

The Riemann problem describes flow initiated with uniform initial conditions upstream and

downstream of a single jump discontinuity. There are two main reasons for discussing the Rie-

mann problem. Firstly, the Riemann problem can be solved analytically and so provides a neat

test for numerical schemes. And secondly, many numerical schemes schemes used to simulate

shallow water flow, such as those found in [61, 10, 40, 20], incorporate exact or approximate

solutions of the Riemann problem to accurately capture wave propagation. Although the central-

upwind Godunov scheme presented in Chapter 5 does not adopt this approach, a discussion of

this problem is still extremely valuable.

Considered the Riemann problem centred at x = x0 = 0 and t = t0 = 0 with the initial
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conditions

h(x, t0) =







ql x < x0

qr x > x0

(3.10)

where ql and qr are constant vectors. The solution to (3.10) stretches uniformly in space as time

increases so that the solution depends only on the single variable x/t rather than on x and t

separately. This reduction in the number of independent variables allows analytical solutions

to be found more easily. However finding solutions to the general Riemann problem for the

shallow water wave equations is still difficult. Consequently the following only discusses the

qualitative structure of the solution. Nevertheless Section 3.3.1 presents the analytical solution

of an idealised Riemann problem, specifically the Riemann problem with the limiting assumption

that fluid on either side of the jump discontinuity is initially at rest.

As the solution evolves, some of the water on the left side of the discontinuity is accelerated

instantaneously causing it to flow over the slower moving fluid on the right side of the disconti-

nuity, and cause a shock. For now let us assume that the shock moves with constant speed. Then

at some time in the future t1 the solution can be decomposed into three regions: the undisturbed

regions to the left l, and right r, of the disturbance emanating from the point of the initial discon-

tinuity; and an intermediate region m connecting these two quiescent states. The intermediate

region can be further decomposed into another two regions. If the shock moves at constant speed

the state immediately behind the shock will remain constant for all time. However this state

cannot continue upstream indefinitely since the velocity of this region is non-zero and a section

of the upstream domain will still be undisturbed and thus have no velocity. This means that there

must be some form of depression wave connecting these two constant states.

Figure 3.5(a) shows the two families of characteristic curves of a dam-break producing sub-

critical flow and how they change within each region. The shock occurs when the 2-characteristic

curves of differing slope meet. This is referred to as a 2-shock. A 1-shock is created when 1-

characteristic curves converge. The regions containing constant states are indicated by character-

istic curves with the same constant slope. In this solution the intermediate constant state and the

upstream constant state have been connected with a rarefaction fan. These occur immediately to

the left and to the right of the shock and to the left of the rarefaction fan. This region could also

consist of a shock propagating with a speed s determined by the Rankine-Hugoniot condition

(3.8). However this solution is not physically plausible and violates the entropy condition (3.9).

The non-linear nature of the shallow water equations makes deriving a mathematical expres-

sion of the general Riemann problem very difficult and as a result such a discussion is beyond the
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scope of this thesis. However solutions to certain idealised Riemann problems are more easily

obtained. An analytical solution of one such problem is given in Section 3.3.1.

3.3 Analytical Solutions

It is very difficult to comprehensively analyse numerical models of physical systems. How-

ever analytical solutions provide means to at least test a model’s ability to simulate certain ide-

alised situations. This section presents a number of analytical solutions that describe both un-

steady and steady shallow water flow. The exact solutions selected are intended to provide insight

into the behaviour of the shallow water equations and provide a valuable means to establish the

veracity of the numerical schemes presented later.

3.3.1 Dam-Break Problem

One-dimensional dam-break problems represent an idealized case of the Riemann problem

discussed above with the limiting assumption that fluid on either side of the jump discontinuity

is initially at rest. Physically they represent the instantaneous collapse of an infinitesimally thin

dam wall in a wide infinitely long horizontal channel. These problems admit discontinuous

solutions and so provide a tough test of the ability of a numerical model to resolve discontinuities

and rarefaction fans. The following presents analytical solution of dam-breaks in channels with

finite water depth everywhere and in channels with a dry bed downstream of the dam wall.

Finite Water Depth

Stoker [50] constructed analytical expressions of the free surface and velocity of shallow

water flow resulting from a dam-break . Consider the dam-break with the following initial con-

ditions

u(x, 0) = 0 and h(x, 0) =







h0 x > 1000

h1 x ≤ 1000
(3.11)

At time t = 0 the dam wall is immediately removed and at any subsequent time t the spatial

domain can be divided into four regions (see Figure 3.6). A shock forms to the right of the initial

disturbance as faster moving water, accelerated by removing the dam, hits the stationary water

downstream. Behind this shock a constant region (2) forms. This region (2) is connected to the
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Figure 3.5: Solution of the dam-break Riemann problem (3.10). The solid lines indicate the

position of the shock wave and edges of the rarefaction fan and the dotted lines show (a) the

1-characteristics and (b) the 2-characteristics.
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undisturbed water upstream (1) by a rarefaction fan with a parabolic free surface. The point at

which these two regions meet is determined by the characteristic given by

x = −c1t

The characteristic separating the rarefaction fan (3) and the constant wave region (2) is given by

x = (u2 − c2)t

Finally the position of the shock, travelling at the speed S2, is given by

x = S2t

Here c0 =
√

gh0, c1 =
√

gh1 and c2 =
√

gh2. Applying the conservation of mass to the column

of water surrounding the shock yields

h0(S2 − u0) = h2(S2 − u2) (3.12)

and since u0 = 0m/s
c2
0

c2
2

=
h0

h2
=

S2 − u2

S2
(3.13)

Similarly applying the conservation of momentum to the column of water surrounding the shock

yields
1

2
(c2

2 − c2
0) = h2(S2 − u2)(u2 − u0)

Note that applying the conservation of mass and momentum across the shock is not a trivial

process. Again noting u0 = 0 and substituting u2 as defined in (3.12) into the above equation

yields
1

2
(c2

2 − c2
0) = h2(S2 − u2)S2

h2 − h0

h2

and after rearrangement

c2
2 + c2

0 = 2S2(S2 − u2) (3.14)

By eliminating c2 from (3.14) using (3.13) we obtain the quadratic equation

2S2(S2 − u2) − c2
0(S2 − u2) − c2

0S
2
2 = 0

Solving for u2 gives

u2 = S2 −
c0

4S2

(

1 +

√

1 +
8S2

2

c2
0

)

(3.15)
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Figure 3.6: Typical solution of the dam-break problem with undisturbed finite water depth down-

stream at some time t1 > 0.

Here, noting that u2 and S2 are always positive, the positive sign of the radical was used to ensure

that u2 − S2 and −S2 have the same sign. Next we eliminate u2 from (3.15) using (3.13) and

obtain

c2
2

c2
0

=
1

2

√

1 +
8S2

2

c2
0

− 1

2
(3.16)

Equations (3.15) and (3.16) provide expressions of the velocity u2 and the wave speed c2 in

the constant region behind the shock as functions of the shock speed S2 and the wave speed

c0 in the undisturbed region (0). Consider the rarefaction fan in region (3). Along each of the

characteristics in this region (Figure 3.6) the Riemann invariant u + 2c is constant, so on the left

extreme of the rarefaction fan

u + 2c = 2c1
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and on the right extreme

u + 2c = u2 + 2c2

Then combining these two equations yields

2c0 = u2 + 2c2

and substituting the values of u2 and c2 as determined by (3.15) and (3.16) yields a nonlinear

expression for the shock speed S2

c1 =
S2

2
− c2

0

8S2



1 +

√

1 +
8S2

2

c0



+





c2
0

2

√

1 +
8S2

2

c0
− c2

0

2





1/2

or in a more convenient form

S2 = 2c1 +
c2
0

4S2

(

1 +

√

1 +
8S2

2

c2
0

)

−
(

2c2
0

√

1 +
8S2

2

c2
0

− 2c2
0

)1/2

Now that the shock speed has been determined we can evaluate u2 and c2 and hence determine

the nature of the solution in region (3). In this region the characteristic curves are determined by

dx

dt
=

x

t
= u3 − c3

Adopting a similar argument to that previously, we again note that along each of the characteris-

tics in this region (Figure 3.6) the Riemann invariants u + 2c is constant, so on the left extreme

of the rarefaction fan

u + 2c = 2c1

and along the rarefaction fan

u + 2c = u3 + 2c3

So

2c1 = u3 + 2c3

Finally solving these equations yields

u3 =
2

3

(

c1 +
x

t

)

and

c3 =
2

3
c1 −

x

3t
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For given initial conditions, we can now determine the free surface profile and velocity at any

time t > 0 for the idealised dam break with zero initial velocity and non-zero finite water depths.

Specifically the analytical solution of (3.11) is

h(x) =































h1 x ≤ −t
√

gh1

h3 = 4
9g

(√
gh1 − x

2t

)2 −t
√

gh1 ≤ x ≤ t(u2 −
√

gh2)

h2 = h0

2

√

1 + 8
(

2h2

h2−h0

√
h1−

√
h2√

h0

)2

− h0

2
t(u2 −

√
gh2) < x < tS2

h0 tS2 ≤ x

(3.17)

u(x) =































0 x ≤ −t
√

gh1

u3 = 2
3

(√
gh1 + x

t

)

−t
√

gh1 ≤ x ≤ t(u2 −
√

gh2)

u2 = S2 − gh0

4S2

(

1 +
√

1 +
8S2

2

gh0

)

t(u2 −
√

gh2) < x < tS2

0 tS2 ≤ x

(3.18)

where the shock speed is given by

S2 = 2
√

gh1 +
gh0

4S2



1 +

√

1 +
8S2

2

gh0



−



2gh0

√

1 +
8S2

2

gh0
− 2gh0





1/2

Unfortunately this solution requires solving two non-linear equations to find the velocity in

the constant region behind the shock u2 and the shock speed S2. However recently Wu et al. [57]

derived a solution to the same problem that only requires solving one non-linear equation

h2 =
h0

2





√

1 + 8

(

2h2

h2 − h0

√
gh1 −

√
gh2√

gh0

)2

− 1





1/2

The resulting value for h2 is then used to find

S2 =
2h2

h2 − h0
(
√

gh1 −
√

gh2)

and

u2 = 2(
√

gh1 −
√

gh2)

Values of h3 and u3 are found using the corresponding equations found in (3.17) and (3.18)
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Figure 3.7: Typical solution of the dam-break problem on to a dry bed at some time t1 > 0.

Dry Bed Flow

The ability to simulate flow over dry beds is a very desirable property of any model used to

simulate shallow water flows. Consider a dam-break problem with a finite water depth upstream

and a dry bed h0 = 0m downstream. In this situation a shock is no longer created and the constant

state with depth h2 and velocity u2 disappears. Under these circumstances the solution consists

of only three regions, the undisturbed upstream and downstream regions and the rarefaction

connecting these constant states (see Figure 3.7).

The analytical solution to this problem is presented by Ritter [45] and is given by

u(x) =















0 x ≤ −t
√

gh1

u3 = 2
3

(√
gh1 + x

t

)

−t
√

gh1 < x ≤ 2t
√

gh1

0 2t
√

gh1 ≤ x

(3.19)
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h(x) =















h1 x ≤ −t
√

gh1

h3 = 4
9g

(√
gh1 − x

2t

)2 −t
√

gh1 < x ≤ 2t
√

gh1

h0 2t
√

gh1 ≤ x

(3.20)

3.3.2 Oscillating Planar Free Surface in a Frictionless Parabolic Canal

Flows in parabolic canals and basins admit an interesting class of analytical solutions which

can be used to test the accuracy of numerical models of shallow water flow. Thacker [54] devel-

oped an analytical description of flow oscillating along the entire length of a uniform frictionless

channel with a parabolic bed profile. The free surface of the water in the channel remains planar

along the entire length of the channel for all time.

Let us assume that the basin profile is given by

zb = z∞

(

x2

L2
x

+
y2

L2
y

)

Here Lx and Ly are the lengths of the equilibrium water surfaces in the x and y directions ,

respectively and z∞ is the maximum water depth at equilibrium (refer to Figure 3.8). For this

problem we assume that Ly ≫ Lx so v = 0 and dz/dy = 0

z∞

h(x, t)

Lx

zb(x)

x(m)

z(m)

Figure 3.8: A typical representation of a flat, initially stationary, water surface in a parabolic

canal.
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The water surface profile of an oscillating planar free surface in a parabolic canal is given by

z(x, t) = z∞ + 2A0
z∞
Lx

cos ωt

(

x

Lx
− A0

2Lx
cos ωt

)

(3.21)

and the velocity of the flow is

u = −A0ω sin ωT (3.22)

Here A0 determines the amplitude of the oscillations and the angular frequency of the oscillation

is given by

ω =

√

f 2 +
2gz∞
L2

x

Note that the solution presented here is based on the inhomogeneous form of the shallow

water wave equations with a source term given by S = −ghbx. The dam-break problems above

can also be modelled using this equation. However because the dam-breaks are simulated over

horizontal beds the source terms becomes zero.

3.3.3 Steady Flow

A robust numerical method must be able to accurately simulate unsteady and steady flows.

Consequently it must be able to accurately reproduce steady flow profiles and converge to the

corresponding solutions given certain initial conditions. Replicating surface profiles of station-

ary, undisturbed regions of fluid with varying topography provides a simple yet effective test.

However steady flow over a change in the bed of a channel provides a more interesting and more

strenuous trial of model performance.

Many of the analytical solutions available describe steady flow in wide, rectangular, fric-

tionless channels with a single obstruction or depression somewhere along their length. The

exact nature of these solutions is dependent on the height and velocity of the fluid upstream and

downstream of the obstacle and on the size of the structure itself. Here we derive an analytical

expression for steady flow in a horizontal frictionless channel of constant width, with bottom

elevation zb(x), that contains a parabolic obstruction somewhere along its length. Flow in this

channel is governed by the shallow water wave equations

ht + (uh)x = 0 (3.23)
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(uh)t + (u2h +
1

2
gh2)x = −gh(zb)x (3.24)

Assuming that the derivatives of u and h are smooth, expanding the derivatives in (3.24) yields

uht + hut + u(uh)x + uhux + gh(hx + zb)x = 0

Then using (3.23) to replace the ht term and dividing by h we obtain

1

h
uht + ut + uux + g(hx + zb)x = 0

Under steady flow conditions the water depth h and velocity u throughout the channel does not

change with time, so the continuity and momentum equations, (3.23) and (3.24), become

(uh)x = 0

uux + g(hx + zb)x = 0

Integrating with respect to x gives

uh = q

and
1

2g
u2 + h + zb = C (3.25)

where q is the volume flux per unit width of the channel and C is a constant. These equations are

valid throughout the entire length of the channel. Thus, far from the obstacle, where h(x) → h0,

zb(x) = 0 and u(x) = u0 and we can write

uh = u0h0 (3.26)

and
1

2g
u2 + h + zb =

u2
0

2g
+ h0 (3.27)

Here h0 and u0 refer to the flow conditions at a point upstream unaffected by the obstruction.

See Figure 3.9. By eliminating u from (3.27) using (3.26) we obtain

u2
0h

2
0

2gh2
+ h + zb =

u2
0

2g
+ h0

Recalling Fr0 = u0/
√

gh0 and dividing by h0 the above equation becomes

Fr2
0

2

h2
0

h2
+

zb

h0

+
h

h0

=
Fr2

0

2
+ 1
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Figure 3.9: The water surface profile for flow over a parabolic obstruction in a frictionless wide

rectangular canal conveying a constant flow.

Then rearranging and substituting the dimensionless quantities D = h/h0 and H = zb/h0 we

can write
Fr2

0

2D2
+ D =

Fr2
0

2
− H + 1

We can now find the water surface profile by solving the cubic equation

D3 + D2

(

H − 1 − Fr2
0

2

)

+
Fr2

0

2
(3.28)

3.4 Conclusion

In this chapter we have seen that the non-linear hyperbolic nature of the shallow water wave

equations makes finding analytical solutions difficult. The equations admit both continuous and

discontinuous solutions even when the initial conditions are smooth. A detailed derivation of

the analytical solution of an idealised dam-break was given to indicate the difficulties faced

even when describing relatively simple flows. A number of other analytical solutions were also

presented as examples of other types of shallow water flows.



Chapter 4

Numerical Methods for solving the Shallow

Water Wave Equations: An Overview

As mentioned in Chapter 3, the non-linear hyperbolic nature of the shallow water wave equa-

tions makes finding analytic solutions to these equations difficult. The equations admit both

continuous and discontinuous solutions even when initial conditions are smooth. Consequently

numerical schemes are needed to solve most practical problems. This chapter presents some of

the major numerical methods used to solve the shallow water wave equations. The approaches

described here can be divided into two categories – finite volume methods and finite element

methods. Spectral methods have also been used to solve the shallow water equations, but much

less frequently than the other aforementioned approaches. Finite volume methods can be fur-

ther divided into three categories – naive, upwind and high-resolution schemes. Other finite

volume techniques have been developed but are not considered here. Finite element methods

used to solve the shallow water equations can be subdivided into two categories – discontinuous

Galerkin and streamline diffusion methods.

The treatment of numerical methods found here differs from reviews of traditional texts

[31, 34, 33] in several ways. Firstly, unlike most texts this review considers both finite vol-

ume and finite element methods and discusses their differences and similarities, advantages and

disadvantages. A classification of these schemes is attempted to facilitate the differentiation of

the various methods used to simulate shallow water flow. Emphasis was placed on a simple syn-

thesis of appropriate techniques and where possible implementation issues specific to modelling

the shallow water wave equations. Furthermore, the literature was often difficult to follow, partly

because of the piecemeal accrual of results. So an attempt has been made to present relevant

42
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concepts more simply. The remainder of this chapter considers the Lagrangian formulation of

the shallow water equations and associated numerical schemes.

There is no single correct classification of numerical methods used to solve the shallow water

wave equations. In fact even in the following, various methods do not lie completely within a

particular class. Often these methods combine techniques common to a number of approaches.

This particular classification was developed to better describe the numerical techniques used to

simulate shallow water flow and to introduce the concepts relevant to the finite volume method(s)

constructed later in this thesis.

To enhance the value of the following chapters the remainder of this chapter discusses the

numerical techniques used to solve systems of equations belonging to the broader class of hyper-

bolic conservation laws to which the shallow water equations belong, viz.

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = S (4.1)

For the shallow water wave equations

q =

[

h

uh

]

f(q) =

[

uh

u2h + 1
2
gh2

]

S =

[

0

−ghbx

]

For simplicity the following will focus on solving the homogeneous problem (S = 0). How-

ever methods used to model the inhomogeneous equations are discussed in detail in Chapter

5.

4.1 Finite Volume Method

Finite volume methods are based on the integral form of the conservation law

d

dt

∫ x2

x1

q(x, t) dx + f(q(x2, t)) − f(q(x1, t)) = 0 (4.2)

It is this integral form of the conservation law that ensures that the approximated solution of a

finite volume method is conservative. This is particularly important when trying to accurately

resolve shock waves. Simply, finite volume methods subdivide the spatial domain into cells,

known as the finite volumes, in which approximations to the integrals of the conserved variables

are calculated. At each time step the flux through the boundaries of these cells is approximated

and the conserved values within these regions are updated accordingly. From equation (4.2) an
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explicit conservative time-stepping algorithm can be found by integrating from tn to tn+1 (see

Figure 4.1), rearranging and dividing by ∆x

Qn+1
j = Qn

j − ∆t

∆x

(

F n
j+1/2 − F n

j−1/2

)

(4.3)

Here Qn
j approximates the average value of the quantity q at time tn := n∆t and F n

j+1/2 is an

approximation of the average flux across the cell interface at x = xj+1/2. That is

Qn
j ≈ 1

∆x

∫ xj+1/2

xj−1/2

q(x, tn) dx and F n
j+1/2 ≈

1

∆t

∫ tn+1

tn
f(q(x, tn)) dt

Rearranging equation (4.3) yields

Qn+1
j − Qn

j

∆t
+

F n
j+1/2 − F n

j−1/2

∆x
= 0

This equation can equally be interpreted as a finite difference approximation, or as a finite vol-

ume approximation to the conservation law qt + f(q)x = 0, and illustrates the interrelationship

between these two methods.

Fj+1/2Fj−1/2

jj − 1 j + 1

tn+1

tn

∆x

Figure 4.1: Control volume for cell j and the associated intercell fluxes.

The majority of finite volume methods can be classified into three broad categories – naive

schemes, upwind schemes and high-resolution schemes. These differ in the way the numerical

flux of equation (4.3) is evaluated. Naive schemes do not directly consider the properties of

the governing equations, whereas upwind methods do and as a result are slightly more compli-

cated. High-resolution schemes employ different methods for avoiding the artificial oscillations

introduced by the higher-order methods used.
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4.1.1 Naive Schemes

Finite volume methods can be partitioned into explicit and implicit schemes. Explicit schemes

calculate the state of a system at a later time from the state of the system at the current time.

Implicit schemes approximate the state of the system at the later time by solving an equation

involving both the current state of the system and the later one. For non-linear equations such

as the shallow water equations the discretised equations resulting from an implicit scheme are

also non-linear. Solving these equations is a computationally costly procedure and so explicit

schemes are generally used. The following examines some explicit finite difference schemes.

The classical first-order Lax-Friedrichs scheme can be used to solve the one-dimensional

shallow water equations. This method uses the explicit updating scheme in (4.3) where the

numerical flux is given by

Fj+1/2 =
1

2
(Fj+1/2 − Fj−1/2) −

∆x

2∆t
(Qj+1 − Qj) (4.4)

However, the scheme is highly diffusive and generates approximate solutions that are excessively

smoothed. This property is typical of first-order methods and can only be addressed by heavy

refinement of the grid used.

The second-order two-step MacCormack scheme has also been used to simulate shallow

water flow [62]. This scheme approximates the solution at time tn+1 by first calculating an

intermediate value for the average cell values (first step)

Q̄n+1
j = Qn

j − ∆t

∆x
(F n

j+1 − F n
j ) (4.5)

This value is then used to find the final cell values (second step)

Qn+1
j =

1

2
(Qn

j + Q̄n+1
j ) − ∆t

2∆x
(F̄ n+1

j − F̄ n+1
j−1 ) (4.6)

where F̄ = F (Q̄). This scheme does not perform well in the presence of shocks and intro-

duces non-physical oscillations into the solution. This problem is typical of second-order naive

difference methods.

4.1.2 Upwind Schemes

Hyperbolic conservation laws (4.1) propagate information along characteristics as waves at

different speeds, and possibly in different directions. Upwind methods utilise this knowledge
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to obtain approximations of the numerical flux functions, which are more robust than naive ap-

proximations. Upwind methods gather information in the direction from which the information

is coming [34].

The upwind scheme proposed by Bermudez and Vazquez [5] employs a spatial discretisation

based on the propagation properties of the conservation law, which is typical of upwind finite

difference methods. The method involves constructing a matrix G that satisfies f(q) = Gq. For

the shallow water equations

G = PΛP−1 =

[

0 1

−u2 + gh2/2 2u

]

P =

[

1 1

u +
√

gh/2 u −
√

gh/2

]

and

Λ =

[

u +
√

gh/2 0

0 u −
√

gh/2

]

Using these matrices the flux matrix G can be decomposed into fluxes dependent on the direction

of flow so that F = F+−F− and the governing equations become Qt+(F+)x+(F−)x = 0. The

propagation properties of the system are exploited by considering the direction of flow explicitly.

Backwards differencing is used to discretise (F+)x and forward differencing is used to discretise

(F−)x so that F+ = (F+|F |)/2 and F− = (F−|F |)/2. Assuming |F | = |G|q and |G| = P |Λ|P
the inter-cell flux becomes

Fj+1/2 =
1

2
(Fj+1/2 + Fj) +

1

2
(|Fj+1/2| − |Fj |)

Unfortunately this scheme produces entropy-violating conditions at the transition from subcriti-

cal to supercritical flow [62]. There are many other upwind methods which can be used to solve

the shallow water equations, but many of these also suffer from entropy-violating conditions. On

many occasions an entropy ‘fix’ can be used to improve the simulated profile near the entropy

violating point. However this entropy-violating point may not be removed completely (Zoppou

and Roberts [62]).

4.1.3 High-Resolution Methods

Upwind methods generally preserve monotonicity, but in doing so can lose accuracy. In

contrast second-order accurate methods such as the two-step MacCormack scheme (4.5,4.6) give

much better resolution of smooth regions than upwind methods but introduce oscillations near

discontinuities. High-resolution methods attempt to combine the desirable properties of these
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two methods, by obtaining higher-order accuracy where possible, but do not enforce this higher

accuracy in regions where the numerical solution might behave poorly. Simply, high-resolution

methods attempt to increase the amount of numerical dissipation near discontinuities to combat

the artificial oscillations introduced by higher-order methods.

To dampen the oscillations created by high-order methods a slope limiter, flux limiter, flux

correction or some form of dissipation must be used [62]. Slope limiters impose constraints on

the gradients of the dependent variables. Flux limiters impose constraints on the gradients of the

flux functions. Flux correction involves updating an upwind flux with an anti-diffusion flux and

dissipation methods introduce artificial viscosity to the basic schemes to reduce oscillations in

the numerical solution.

Total variation provides a way of measuring oscillations in a solution. For a grid function Qn

total variation is defined as TV (Qn) =
∑∞

j=−∞ |Qj−Qj−1|. We can attempt to avoid oscillations

by requiring that the total variation of Qn not increase with time. Methods that uphold this

condition are known as Total Variation Diminishing (TVD) schemes and preserve monotonicity.

A scheme is said to be total variation diminishing, if for any set of data Qn, the values Qn+1

computed by the scheme satisfy TV (Qn+1) ≤ TV (Qn). Unfortunately Godunov’s theorem

states that monotone preserving linear schemes can at best be first-order accurate [22]). However

second-order TVD schemes can resolve smooth regions with the higher order of accuracy whilst

reducing to first-order accuracy close to shocks.

Artificial Viscosity

The simplest means to reduce oscillation is to introduce artificial dissipation into a second-

order numerical scheme such as the MacCormack scheme (4.5,4.6). For example Davis [16]

proposed the following TVD scheme

Qn+1
j = QMac

j + (Dj+1/2 − Dj−1/2)

where Qmac
j is the MacCormack solution and Dj±1/2 are the artificial dissipative terms. These

non-linear terms depend on the Courant number and are limited to suppress oscillations. When

employed to solve the shallow water equations this scheme generally produces excellent resolu-

tion of shocks and refraction fans, but oscillations in the solution are not completely removed.
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Flux-Corrected Methods

First-order TVD schemes are also used in conjunction with higher-order numerical schemes

to create a method that exhibits higher-order accuracy in smooth regions and robust first-order

behaviour around discontinuities. This framework was first proposed by Boris and Book [8] and

involves updating an upwind flux (see section 4.1.2) with an anti-diffusion flux. This flux is

limited so that existing extrema are not accentuated and no new extrema are introduced [62]. Yee

[58] proposes a TVD Lax-Wendroff scheme where the flux is given by

Fj+1/2 = F UP
j+1/2 + φj(F

SO
j+1/2 − F UP

j+1/2) (4.7)

where F UP
j+1/2 is a first-order conservative upwind flux, F SO

j+1/2 is a second-order conservative

Lax-Wendroff flux and φ is a flux limiter that ensures the solution is TVD. Generally these flux

limiters are a function of the parameter

θ =
q̄j − q̄j−1

q̄j+1 − q̄j

One such commonly used limiter is the van Leer limiter given by

φj(θ) =
|θ| + θ

1 + θ

When used to solve the shallow water wave equations such a scheme may not introduce enough

artificial diffusion to completely remove all oscillations [62]. These schemes can also produce

entropy violating conditions (refer to Section 3.1.2), caused by the upwind methods they employ

(see section 4.1.2).

Godunov-Type Methods

There are two types of Godunov schemes: central and upwind. Upwind Godunov-type meth-

ods are a generalisation of the upwind finite difference schemes discussed previously in which

the local characteristic structure is used by solving a Riemann problem rather than diagonalis-

ing the Jacobian matrix. These schemes use exact or approximate Riemann solvers to solve the

Riemann problems at each cell interface. Central Godunov-type methods instead use exact evo-

lution of the solution by averaging over the local Riemann fans. A detailed description of central

schemes is given in Section 5.

Upwind Godunov-type methods involve solving a sequence of local Riemann problems

q(x, 0) =







ql x < xj−1/2

qr x > xj−1/2

(4.8)
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at each cell interface. The numerical fluxes used in (4.3) are found by evaluating the true flux

function with the solution of the Riemann problem (4.8) at each cell interface so that

Qn+1
j = Qn

j − ∆t

∆x

[

f(qn
j+1/2) − f(qn

j−1/2)
]

where qn
j±1/2 are the solutions to the Riemann problem at xj±1/2.

At each cell interface the states ql and qr are estimated from the reconstruction polynomial

Qj(x) = Pj(x). It is the order of this polynomial that determines the order of the scheme. A

piecewise constant reconstruction produces a first-order method where the left and right states are

given by ql = Qn
j−1 and qr = Qn

j , respectively. A linear reconstruction produces a second-order

method and so on. Once the polynomial Pj(x) has been constructed the left and right states at

each cell interface are limited to avoid oscillations in the solution near discontinuities. An exact

or approximate Riemann solver is then used to calculate the inter-cell flux. Finally at the end of

a time-step the data is re-averaged and the process is begun again.

Exact Riemann solvers can be used to solve the local Riemann problems, but this method

is complex and case specific. Consequently many approximate Riemann solvers have been de-

veloped, each with various benefits and disadvantages. The nature of the Riemann problem is

investigated in Section 3.2, however a discussion of approximate Riemann solvers is beyond the

scope of this thesis, but can be found in [62, 34]. Examples of solving the shallow water wave

equations using upwind Godunov-type methods can be found in [23, 10, 49, 40].

Slope-Limiter Methods

The Upwind Godunov methods described in the previous section reconstruct the solution

within each cell with a polynomial of degree s. When s ≥ 1 these higher-order reconstructions

introduce artificial oscillations (Figure 4.2(a)) . These local extrema can be dampened using

slope limiters (Figure 4.2(b)) so that the reconstruction in cell j is given by

q(x) = q(xj) + σj(x − xj)

One choice is the minmod slope limiter

σn
i = minmod

(

Qn
j − Qn

j−1

∆x
,
Qn

j+1 − Qn
j

∆x

)

(4.9)
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which preserves second-order accuracy whilst still satisfying the TVD property. Here the min-

mod function of two arguments is given by

minmod(a, b) =



















a if |a| < |b| and ab > 0

b if |b| < |a| and ab > 0

0 if ab ≤ 0

More sophisticated limiters have been developed, including the Superbee, van Leer, van Albada,

and monotonized central-difference slope limiters, but no one limiter performs the best in all

situations. Refer to Sections 5.2 and 6.2 for a detailed discussion of slope limiters and their

performance.

Essentially Non-Oscillatory (ENO) Schemes

Finite difference-type schemes achieve high-order accuracy by using large stencils and hence

they may loose accuracy near shocks (pollute) [14]. This problem of pollution may be over-

come with the use of essentially non-oscillatory (ENO) schemes and an adaptive grid approach.

The large stencils, however, will still cause difficulties when dealing with irregular geometries

and/or complicated boundary conditions. Unlike TVD schemes non-oscillatory schemes are not

required to dampen the values of each local extrema at each time step. Instead local extremism

can be accentuated occasionally and the increase in amplitude recovered at the next time step

[24].

ENO schemes were developed to provide a means of automatically dealing with solutions

that are not smooth. Consider the piecewise linear upwind Godunov method described above.

New local extrema were avoided by limiting the left and right states at the cell interfaces using

a slope limiter. ENO methods can be extended to polynomials of arbitrary degree s. The inter-

polation points used to determine the polynomial reconstruction of the solution within each cell

are chosen so as to minimise the amount of oscillation introduced into the solution. In essence

ENO methods choose the optimal stencil when performing the reconstruction [47]. Leveque

[34] provides the following example: Start with the linear function passing through q(xj) and

q(xj+1) to define the first-order polynomial P
(1)
j (x) where the superscript indicates the order

of the polynomial. This polynomial can be extended to a quadratic polynomial P
(2)
j (x) by cal-

culating the two divided differences based on the points {q(xj+1/2), q(xj−1/2), q(xj−3/2)} and

{q(xj+3/2), q(xj+1/2), q(xj−1/2)} and selecting the one with the smallest magnitude. This pro-

cess is repeated until a polynomial of degree s is chosen.
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Qn
j

Qn
j+1

Qn
j−1

∆x
x

q

(a)

Qn
j

Qn
j+1

Qn
j−1

∆x
x

q

(b)

Figure 4.2: Piecewise linear reconstruction using (a) upwind slopes (b) gradients subject to the

minmod slope limiter.
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4.2 Finite Element Method

Standard finite element methods do not work well in cases where the exact solution is not

smooth. If a discontinuity is present in the exact solution then the finite element solution will

generally be characterised by large spurious oscillations even far from the jump itself [27]. This

is an obvious concern for hyperbolic equations, in particular the shallow water equations, for

which exact solutions are often discontinuous. Two modified finite element methods have been

developed to overcome these difficulties. These methods are known as the streamline diffusion

method and the discontinuous Galerkin method and are discussed in the following section.

4.2.1 Streamline Diffusion Method

Streamline Diffusion (SD) methods can be viewed as variants of the standard Galerkin finite

element method. Simply the test functions of the standard Galerkin method are modified in a

manner that results in added stability without sacrificing accuracy [27]. The basic SD method was

first applied to non-linear, stationary, hyperbolic conservation laws by Hughes and Tezduyar [26]

in 1984. This method provides a large improvement from standard Galerkin methods. In some

cases, however, irregularities around shocks may still exist [27]. From this basic formulation

Hughes et al. [25] developed a shock-capturing SD method for hyperbolic conservation laws.

This method dealt with discontinuities present in the solution by adding a ’shock-capturing’ term

that introduces ’crosswind’ control near these shocks. This method has the qualitative properties

of a finite difference scheme that is second-order in smooth regions and first-order close to shocks

[27].

The shock capturing streamline diffusion method is used to solve the time-dependent hyper-

bolic system of conservation laws in R
d

ut + f(u)x, t > 0 (4.10)

For simplicity let us considers Burger’s equation

ut + uux = 0 , x ∈ R(−∞,∞), t > 0

u(x, 0) = u0(x) , x ∈ R

The method begins by defining a finite element space. To construct this space consider a sequence
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of time levels 0 = t0, t1, . . . and the ‘slabs’ Sn = R
d × In. In addition for h > 0 let T n

h be a

quasi-uniform triangulation of Sn and define

V h
n =

{

v ∈ H1(Sn) : v|k ∈ Pk(K), K ∈ T n
h

}

where Pk(K) denotes the polynomials of degree at most k. An approximate solution U = Uh

is then found in the space Vh = Πn≥0V
n
h . The functions in Vh are continuous in x and possibly

discontinuous in t at the discrete time levels tn.

Using this foundation the basic SD method is formulated as follows: find U ∈ Vh such that

for n = 1, 2, . . .,
∫

Sn

(Ut + UUx)(v + δ(vt + Uvx)) dxdt +

∫

R

(Un
+ − Un

−)vn
+dx = 0, ∀v ∈ V n

h (4.11)

where δ = h, U0
− = u0 and

vn
± = lim

s→0±
v(tn + s)

The above formulation of the basic SD method has used the standard Galerkin test functions plus

a bias term. The shock-capturing SD method introduces an additional bias term to obtain a better

approximation of the solutions to (4.10) near discontinuities. Using the notation β = β(U) =

(1, U) and ∇v = (vt, vx) the modified test function in (4.11) can be written

v + δ(vt + Uvx) = v + δβ · ∇v

where β(U) · ∇v = vt + Uvx. In comparison the modified test functions in the shock-capturing

method are given by

v + δβ · ∇v + δ̄β̄ · ∇v

Here δ̄ is another parameter with δ̄ ∼ h and

β̄ =
β · ∇U

|∇U |2
∇U

Finally the shock-capturing method finds U ∈ Vh such that for n = 1, 2, . . . ,
∫

Sn

(Ut + UUx)(v + δβ(U) · ∇v + δ̄β̄(U) · ∇v) dx dt +

∫

R

(Un
+ − Un

−)vn
+dx = 0, ∀v ∈ V n

h

The streamline diffusion method is not used as frequently to solve the shallow water equations

as its discontinuous Galerkin counterpart in Section 4.2.2. However Bova and Carey [9] detail

the use of an SD scheme to simulate shallow water in a channel.
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4.2.2 Discontinuous Galerkin Method

Discontinuous Galerkin (DG) methods are a class of finite element methods that employ

the use of completely discontinuous basis functions, usually chosen as piecewise polynomials

[47]. The discontinuous nature of these basis functions provides flexibility not present in typical

finite element methods. This additional flexibility is typified by the following: The degree of

the piecewise polynomials in each element can be changed independently of its neighbours (p-

adaptivity). Regardless of the order of the scheme DG methods are characterised by a local

data structure in which elements only communicate with immediately adjacent elements. DG

methods can be applied to unstructured non-conforming grids, with hanging nodes and elements

refined and unrefined (h-adaptivity).

The main advantage of the discontinuous Galerkin Method is its local, element-by-element

enforcement of the mass and momentum conservation laws [6]. The unstructured nature of the

grid enables steep fronts and gradients to be captured. DG methods have been shown to be

second-order accurate over linear triangles and are highly parallelisable. A parallel efficiency is

usually more than 99% for a fixed mesh [47]. However one of the major disadvantages of DG

methods is that there are no continuity restrictions between elements and so a high number of

degrees of freedom are required [6].

Similar to finite volume methods a DG scheme approximates an integral form of the con-

servation law (4.2). The computational domain is divided into finite elements ∆j . Triangular

elements are a common choice for two-dimensional equations. Within each element the numer-

ical solution is approximated by a polynomial of degree r and due to the p-adaptivity of the

scheme the two polynomials along the interface of a cell need not satisfy any continuity condi-

tion. This is one of the main differences between the DG method and the streamline diffusion

method (Section 4.2.1). The p-adaptivity of the scheme means that there are (r + 1)(r + 2)/2

degrees of freedom within each finite element which are used as the coefficients of the local poly-

nomial. The high number of degrees of freedom is a major drawback of the DG method, however

computations can be simplified by choosing a local orthogonal basis to expand the polynomial.

The discontinuous Galerkin method is obtained by choosing a test function v(x, y) which is

a polynomial of degree r within the cell, multiplying the conservation equation (4.1) by this test

function, and integrating by parts over the cell ∆j . This yields

d

dt

∫

∆j

u(x, y, t)v(x, y) dxdy −
∫

∆j

F (u) · ∇v dxdy +

∫ ∂∆j

F (u) · nv ds = 0 (4.12)
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Here n is the unit normal to the element boundary ∂∆j .

The second volume integral in the above equation is typically discretised by a sufficiently

high-order numerical quadrature as is the line integral. For problems such as the shallow water

wave equations a total variation bounded (TVB) method (see Laney [31]) may be needed to limit

the solution at interfaces between elements.

Cockburn and Shu [15] have developed a method to solve non-linear time-dependent prob-

lems for hyperbolic conservation laws. Their method consists of three parts:

(i) The conservation law is discretised using a DG discretisation in space with polynomials

of order r. A discontinuous approximation of the solution uh is found such that, when it is

restricted to the element K it belongs to the finite dimensional space U(K) defined by imposing

the equation (4.12) ∀vh ∈ U(K). In this step approximate Riemann solvers or other numerical

flux methods are used to approximate fluxes across cell interfaces.

(ii) The resulting system of differential equations d
dt

uh = L(uh) is discretised using an ex-

plicit total variation bounded (TVB) Runge-Kutta time-stepping scheme of order r + 1. The

following is an example of such time-stepping methods:

Set u
(0)
h = un

h

For i = 1, . . . , k compute the intermediate functions

u
(i)
h =

i−1
∑

l=1

αilw
il
h , wil

h = u
(l)
h +

βil

αil

∆tnLh(u
(l)
h )

Set un+1
h = uk

h

(iii) Finally a generalised slope limiter is used to minimise undershoots and overshoots of the

solution from cell to cell. These limiters are used to provide non-oscillatory solutions containing

shocks. The slope limiter is a non-linear projection operator devised so that for some function

vh if u
(l)
h = ΛΠhvh, then the mapping u

(l)
h 7→ wil

h is stable. In this situation the time marching

algorithm becomes:

Set u
(0)
h = un

h where un
h is the discretised solution at the nth time step. For i = 1, . . . , k compute

the intermediate functions

u
(i)
h =

i−1
∑

l=1

ΛΠh

(

αilw
il
h

)

, wil
h = u

(l)
h +

βil

αil

∆tnLh(u
(l)
h )
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Set un+1
h = uk

h

Much work has been undertaken using DG methods to simulate shallow water flow. For ex-

amples refer to the work by Blain et al. [6] and Bokhove [7]. This discontinuous Galerkin method

can be thought of as a generalisation of the central-upwind Godunov-type method presented in

the next chapter.

4.3 Lagrangian Method

Lagrangian descriptions of the shallow water wave equations are employed much less fre-

quently than their equivalent Eulerian descriptions. The Lagrangian approach has been neglected

for different reasons associated with its practical implementation. Typically, in the past, only Eu-

lerian measurements of a system being modelled were made, and the resulting Eulerian statistics

were not easily translated into Lagrangian coordinates [53]. In addition, a Lagrangian framework

is only more beneficial in certain circumstances and, although conceptualisation may be made

easier, cumbersome analysis is still required [39]. Finally, the moving grid associated with the

Lagrangian coordinates of the fluid particles can become twisted, thereby severely complicating

any numerical method [39].

Recently Lagrangian models of shallow water flow, particularly those describing ocean phe-

nomena such as tsunamis and storm surges, have become more practical. This can be largely

attributed to the advances in satellite monitoring and the increase in the number of measurement

stations that drift across the Earth’s oceans, making Lagrangian data more accessible. However

the ‘distortion’ of the Lagrangian grid still remains and is today the most pertinent issue with

Lagrangian solutions of the shallow water wave equations.

To overcome this problem Mead (2004) [39] uses the Lagrangian grid to represent the initial

position of the particles. This grid is stationary and so is not affected by problems of distortion.

Instead of following an evolving grid the positions of particles are calculated by solving a highly

non-linear partial differential equation. This PDE is associated with the coordinate transforma-

tion that maps the particles from their initial position to their position at time t. This mapping is

similar to that used to derive the equations of motion in Section 2.1.2 and is a precise record of

particles movements.

There is also a theoretical advantage in adopting a Lagrangian description of the shallow

water wave equation. This benefit is found when considering the well-posedness of the equa-
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tions in open domains. Ideally open domains (domains with open boundaries) do not introduce

boundary layer phenomena and their boundaries govern interior flow as if they were not there at

all. When Eulerian domains are adopted they lead, almost inevitably, to ill-posed mixed initial-

boundary-value problems [43]. This is because flow at the open boundaries can vary vertically

between subcritical and supercritical. This can be overcome by applying boundary conditions

for each type of flow, however this may not be practical. In contrast Bennett and Chua [4] have

shown that solutions of the shallow water wave equations are guaranteed to be unique in the

open domains if the equations are solved on moving particles, for example under a Lagrangian

framework.

Wang et al. [55] demonstrate the use of a pure Lagrangian numerical method to model dam-

break flows using the one-dimensional shallow water equations. This method is based on the

smoothed particle hydrodynamics originally developed for astrophysical fluid dynamics and is

grid-free. It therefore avoids the grid distortion methods encountered in grid-based Lagrangian

methods such as that proposed by Mead [39].

4.3.1 Semi-Lagrangian Method

Methods that adopt a hybrid of Eulerian and Lagrangian techniques have also been used to

model shallow water flow (see [35, 59]). These hybrid methods assume that a fluid particle

arrives at a mesh point at the end of each time step. At the beginning of each time step the value

of the conserved variables (e.g. water depth) is known and is assumed to remain constant during

each time step. The position and value of the particle at the beginning of the time step is obtained

by backtracking from a mesh point and interpolating the values at the surrounding mesh points.

The method is explicit, but is not restricted by the Courant-Friedrichs-Lewy (CFL) criterion of

Eulerian schemes [59]. These problems are also not plagued by grid distortion.

4.4 Conclusion

In this chapter a framework was used to discuss and clarify the properties of some of the

frequently used and well-known numerical techniques employed specifically to simulate shallow

water flow. Unlike most texts, finite volume and finite element methods were presented con-

currently and an investigation of their differences and similarities investigated. Emphasis was

placed on a simple synthesis of appropriate techniques and where possible implementation is-
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sues specific to modelling the shallow water wave equations. Alternative descriptions of shallow

water flow, specifically Boussinesq type equations and the Lagrangian formulation of the shallow

water wave equations, are also presented.

This chapter was also intended as an introduction to hydrodynamic modelling, in general, and

to demonstrate the variety of algorithms available. Accordingly, a number techniques presented

above will not be used in later chapters, but appropriate references have been made to enable

readers to investigate further, if they so desire.



Chapter 5

A Central-Upwind Godunov Method for

Solving the 1D Shallow Water Wave

Equations

The shallow water wave equations (2.29) form a hyperbolic non-linear system. Finding an-

alytical solutions to these equations is often difficult and numerical schemes must be employed

to solve many practical problems. There is no one method that best models shallow water flow.

The choice of numerical scheme depends on the purpose for which it is intended.

The shallow water equations admit both smooth and discontinuous solutions even in the

cases in which the initial conditions are smooth. This property provides the greatest challenge

for numerical models. For this reason an important feature of any numerical method is its ability

to accurately resolve shocks. In many applications shallow water flow, such as that arising from

dam-breaks in urban areas, often encounters obstacles. In addition dam-break flow and tsunami

propagation occur over many different topographical regions which are both dry and wet. Thus a

numerical method must be robust enough to deal with flow over dry beds and the appearance of

dry states within previously wet regions. A numerical method should also be able to accurately

describe steady state flows and small perturbations from these steady states over rapidly-varying

topography.

This chapter develops a high-resolution Godunov-type method based on the work of Kurganov

et al. [30] for solving the one-dimensional shallow water equations. A fractional-step method is

used to discretise the problem in time and space. It reduces the non-homogeneous equations into

a sequence of augmented problems and a first or second-order Runge-Kutta method is used to

59
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evolve the solution through time. There is no single method that performs better than all others in

all situations. Instead one aims to develop a method that performs best in addressing the intended

objectives. The major advantages of this model include its ability to model wetting and drying

of beds, accurately resolve shocks and reproduce planar surfaces. In addition the underlying

principle is novel and simple and, although constructed here for one-dimensional flow, can be

easily extended to two-dimensional flow (Section 5.6). Flexible meshes can also be used when

problems involve complex and rapidly-varying geometries.

5.1 Kurganov’s Central-Upwind Scheme

The following will derive a central-upwind Godunov-type numerical scheme for solving one-

dimensional conservation laws such as the shallow water wave equations. This work is based on

the work of Kurganov et al [30]. The central-upwind scheme is a finite volume Godunov-type

method that does not require exact or approximate Riemann solvers or characteristic analysis,

which upwind Godunov-type methods require. However it is upwind in nature in the sense that

one-sided information is used to estimate the size of the rarefaction fan. The main advantages of

the proposed scheme are the higher resolution, due to less numerical dissipation than previous

methods, and its generic nature.

For simplicity let us restrict our analysis to a uniform grid. This grid is broken up into in-

tervals Ij :=
[

xj−1/2, xj+1/2

]

, of length ∆x across which the numerical solution qn
j := q(xj , t

n)

evolves with small time increments ∆t. Here we have adopted the notation: xj := j∆x,

xj±1/2 := (j ± 1/2)∆x, and tn = n∆t.

We start by finding the cell average of q(., tn) over the interval Ij :=
[

xj−1/2, xj+1/2

]

at time

level tn given by

Qn
j (t) =

1

∆x

∫ xj−1/2

xj−1/2

q(x, tn) dx

Using these average values we can construct a piecewise polynomial reconstruction of the

solution in each cell as

q̃(x, tn) = pn
j (x), xj−1/2 < x < xj+1/2 ∀j

This piecewise-polynomial initial condition can be used to build a piecewise polynomial

reconstruction of the entire solution at time tn, with possible discontinuities at the cell interfaces

{xj±1/2}. Consult Figure 5.1(a). Centered at each discontinuity is a rarefaction fan, which must
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be dealt with. Unlike upwind Godunov methods that treat this problem by solving exactly or

approximating the corresponding initial Riemann problems, we utilize the left and right speeds of

these Riemann fans to further decompose the computational domain into rectangular domains of

varying size. These domains break up the numerical solution into continuous and discontinuous

sections. This is achieved by considering the one-sided local speeds of the Riemann fan, which

are estimated by

a+
j+1/2 = max

{

λN

(

∂f

∂q
(q−j+1/2)

)

, λN

(

∂f

∂q
(q+

j+1/2)

)

, 0

}

,

a−
j+1/2 = min

{

λ1

(

∂f

∂q
(q−j+1/2)

)

, λ1

(

∂f

∂q
(q+

j+1/2)

)

, 0

}

Here λ1 < . . . < λN are the eigenvalues of the Jacobian ∂f
∂q

and

q+
j+1/2 = pj+1(xj+1/2) and q−j+1/2 = pj(xj+1/2)

These speeds can be used to construct non-equal rectangular domains (see Figure 5.1(a))

[xn
j−1/2,r, x

n
j+1/2,l] × [tn, tn+1] and [xn

j+1/2,l, x
n
j+1/2,r] × [tn, tn+1] (5.1)

with xn
j+1/2,l := xj+1/2 + ∆ta−

j+1/2 and xn
j+1/2,r := xj+1/2 + ∆ta+

j+1/2

By utilising the propagation speeds of the Riemann fan we have ensured that the Riemann fan

at each discontinuity is contained within the cell [xn
j−1/2,r, x

n
j+1/2,l] between tn and tn+1. Unlike

upwind Godunov methods (Section 4.1.3) no Riemann problems are solved. At each time step

the Riemann problems are centered at xj±1/2 and do not affect the values at xj provided the

Courant number is less than one (refer to Section 5.4.3).

The cell averages

w̄n+1
j =

1

xn
j+1/2,l − xn

j−1/2,r

∫ xn
j+1/2,l

xn
j−1/2,r

pn
j (x) dx

− 1

xn
j+1/2,l − xn

j−1/2,r

∫ tn+1

tn

[

f(q(xn
j+1/2,l, t) − f(q(xn

j−1/2,r, t))
]

dt

w̄n+1
j+1/2 =

1

xn
j+1/2,r − xn

j+1/2,l

[

∫ xn
j+1/2

xn
j+1/2,l

pn
j (x) dx +

∫ xn
j+1/2,r

xn
j+1/2

pn
j+1(x) dx

]

− 1

xn
j+1/2,r − xn

j+1/2,l

∫ tn+1

tn

[

f(q(xn
j+1/2,r, t) − f(q(xn

j+1/2,l, t))
]

dt
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are obtained by integrating over the corresponding domains in (5.1) and are used to reconstruct

a non-oscillatory piecewise polynomial interpolant

w̃n+1(x) =
∑

j

(

w̃n+1
j (x)χ[xn

j−1/2,r, x
n
j+1/2,l] + w̃n+1

j+1/2(x)χ[xn
j+1/2,l, x

n
j+1/2,r]

)

Here the χ’s are the characteristic functions and {w̃n+1
j+1/2(x), w̃n+1

j (x)} are the polynomial pieces

associated with the corresponding intervals of the characteristic functions they multiply. It is

the order of these polynomial pieces that determines the accuracy of the method. A piecewise

constant reconstruction results in a first-order method, a piecewise linear reconstruction gives

rise to a second-order method and so on.

Constructing this piecewise interpolant ensures that the domain can be split up into regions

that allow the cell averages at the next time step to be evaluated without the difficulties originally

posed by the discontinuities at the cell interfaces. The cell averages at time tn+1 are given by

Qn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

w̃n+1
j (x) dx

This framework leads to a fully discretised Godunov-type central upwind scheme. We start with

the time derivative of Qj(t) which is expressed as

d

dt
Qj(t) = lim

∆t→∞

Qn+1
j − Qn

j

∆t
= lim

∆t→∞

1

∆t

[

1

∆x

∫ xj+1/2

xj−1/2

w̃n+1(x) dx − Qn
j

]

(5.2)

Assuming that the slopes of w̃n+1
j±1/2 are uniformly bounded, independently of ∆t, and because

the width of the Riemann fan is bounded by
(

a+
j+1/2 − a−

j+1/2

)

∆t (Figure 5.1(b))

w̃n+1
j±1/2(x) = w̄n+1

j±1/2 + O(∆t) ∀x ∈ [xn
j±1/2,l, x

n
j±1/2,r] (5.3)

In the domain [xn
j−1/2,r, x

n
j+1/2,l] no discontinuity will be present and

1

xn
j+1/2,l − xn

j−1/2,r

∫ xn
j+1/2,l

xn
j−1/2,r

w̃n+1
j (x) dx = w̄n+1

j (5.4)

Using equations (5.3) and (5.4), and substituting into (5.2) with the definitions of xn
j−1/2,r and

xn
j+1/2,l, yields
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Figure 5.1: Spatial discretisation and second-order polynomial reconstruction of the central-

upwind method.



CHAPTER 5. A CENTRAL-UPWIND GODUNOV METHOD 64

d

dt
Qj(t) =

a+
j−1/2

∆x
lim

∆t→∞
w̄n+1

j−1/2 + lim
∆t→∞

1

∆t

(

xn
j+1/2,l − xn

j−1/2,r

∆x
w̄n+1

j − Qn
j

)

−
a−

j+1/2

∆x
lim

∆t→∞
w̄n+1

j+1/2

=
1

∆x
lim

∆t→∞

1

∆t

[

∫ xj−1/2,r

xj−1/2

w̃n+1
j−1/2 dx +

∫ xj+1/2,l

xj−1/2,r

w̃n+1
j dx

+

∫ xj+1/2,r

xj+1/2,l

w̃n+1
j+1/2 dx − ∆xQn

j

]

Generating a piecewise constant reconstruction in each region yields

d

dt
Qj(t) =

1

∆x
lim

∆t→∞

1

∆t

[

[xj−1/2,r − xj−1/2]w̄
n+1
j−1/2 + [xj+1/2,l − xj−1/2,r]w̄

n+1
j

+ [xj+1/2 − xj+1/2,l]w̄
n+1
j+1/2 − ∆xQn

j

]

Then using xn
j+1/2,l := xj+1/2 + ∆ta−

j+1/2 and xn
j+1/2,r := xj+1/2 + ∆ta+

j+1/2 we obtain

d

dt
Qj(t) =

1

∆x
lim

∆t→∞

1

∆t

[

[(xj−1/2 + ∆ta+
j−1/2) − xj−1/2]w̄

n+1
j−1/2 − ∆xQn

j

+(xj+1/2,l − xj−1/2,r)w̄
n+1
j + [xj+1/2 − (xj+1/2 + ∆ta−

j+1/2)]w̄
n+1
j+1/2

]

=
a+

j−1/2

∆x
lim

∆t→∞
w̄n+1

j−1/2 + lim
∆t→∞

1

∆t

(

xn
j+1/2,l − xn

j−1/2,r

∆x
w̄n+1

j − Qn
j

)

−
a−

j+1/2

∆x
lim

∆t→∞
w̄n+1

j+1/2 (5.5)

Treating each term separately we find

lim
∆t→∞

1

∆t

(

xn
j+1/2,l − xn

j−1/2,r

∆x
w̄n+1

j − Qn
j

)

=
a−

j+1/2q
−
j+1/2 − a+

j−1/2q
+
j−1/2

∆x

−
f(q−j+1/2) − f(q+

j−1/2)

∆x

and

lim
∆t→∞

w̄n+1
j+1/2 =

a+
j+1/2a

+
j+1/2 − a−

j+1/2a
−
j+1/2

a+
j+1/2 − a−

j+1/2

−
f(q+

j+1/2) − f(q−j+1/2)

a+
j+1/2 − a−

j+1/2
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where q±j+1/2 are the left and right values of the piecewise polynomial interpolant constructed

at time tn. Substituting these limits into (5.5) we obtain the conservative semi-discrete central-

upwind scheme given by

d

dt
Qj(t) = −Fj+1/2(t) − Fj−1/2(t)

∆x
(5.6)

Here the numerical fluxes Fj+1/2 are given by

Fj+1/2(t) =
a+

j+1/2f(q−j+1/2) − a−
j+1/2f(q+

j+1/2)

a+
j+1/2 − a−

j+1/2

+
a+

j+1/2a
−
j+1/2

a+
j+1/2 − a−

j+1/2

[

q+
j+1/2 − q−j+1/2

]

(5.7)

5.2 Slope Limiters

When constructing the central-upwind Godunov method (Section 5.1) a piecewise polyno-

mial initial condition was used to build a non-oscillatory piecewise polynomial q̃(x, tn) recon-

struction of the entire solution at time tn, with possible discontinuities at the cell interfaces

{xj±1/2}. This polynomial was used to determine the left and right states at cell interfaces. If

the conserved quantities are assumed to be constant in each cell then a first-order approximation

to the inter-cell fluxes is obtained. To achieve second-order accuracy a linear estimate of the left

and right states is necessary.

For a given cell j the piecewise polynomial has the form

q̃(x, tn) = Qn
j + σn

j (x − xj) , xj−1/2 < x < xj+1/2

where σn
j is the slope of the jth cell. Specifically the left and right states of a cell interface are

approximated by

q−j+1/2 = Qn
j +

∆x

2
σn

j and q+
j+1/2 = Qn

j+1 +
∆x

2
σn

j+1

Choosing slopes σn
j = 0 results in a first-order method (Figure 5.2(a)). Choosing non-zero slopes

results in a second-order method. Numerical oscillations are common with these second and

higher-order numerical schemes. These oscillations can be controlled by limiting the slopes of

the linear polynomial reconstructions within each cell, thereby dampening any new local extrema

introduced.
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xj−1/2 xj+1/2

x

h

(a)

xj−1/2 xj+1/2

x

h

(b)

Figure 5.2: Polynomial reconstructions of depth h employed in first and second-order schemes:

(a) piecewise constant reconstruction (b) piecewise linear reconstruction with gradients subject

to the minmod slope limiter.
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Numerous limiter functions have been developed, including the simple minmod limiter

σn
i = minmod

(

Qn
j − Qn

j−1

∆x
,
Qn

j+1 − Qn
j

∆x

)

Here the minmod of two arguments is defined by

minmod(a, b) =



















a if |a| < |b| and ab > 0

b if |b| < |a| and ab > 0

0 if ab ≤ 0

This limiter reduces the slope of a cell severely near discontinuities. Consult Figure 5.2(b). Less

diffuse approximations of discontinuities can be obtained through more sophisticated limiters.

Kurganov et al. [30] advocate the limiter function

σj = minmod

(

β
Qn

j − Qn
j−1

∆x
,
Qn

j+1 − Qn
j−1

2∆x
, β

Qn
j+1 − Qn

j

∆x

)

(5.8)

This limiter ensures the central-upwind Godunov method is TVD (consult Section 4.1.3) for

1 ≤ β ≤ 2 [30]. When β = 2, (5.8) becomes the well known monotonized central-difference

limiter (MC limiter). Another possibility is the Superbee limiter proposed by Roe [46]

σj = maxmod(σ(1), σ(2))

Here

σ(1) = minmod

(

Qn
j+1 − Qn

j

∆x
, 2

Qn
j − Qn

j−1

∆x

)

σ(2) = minmod

(

2
Qn

j+1 − Qn
j

∆x
,
Qn

j − Qn
j−1

∆x

)

and

maxmod(a, b) =



















a if |a| > |b| and ab > 0

b if |b| > |a| and ab > 0

0 if ab ≤ 0

Two limiters originally intended for flux limiting are the van Leer limiter

σj =
|a| a + |b| b
|a| + |b|

and the van Albada limiter

σj =
a2b + ab2

a2 + b2
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Here a and b are the upwind and downwind slopes given by

a =
Qn

j+1 − Qn
j

∆x
and b =

Qn
j − Qn

j−1

∆x

The final limiter considered here was obtained from a open sources software package called

ANUGA developed jointly by Geoscience Australia and the Australian National University. This

Pyvolution limiter adopts a slightly different technique to dampen slopes than the aforementioned

limiters. Before the limiter can be applied the gradients in each cell must be calculated using

central-differences on the internal cells and upwind or downwind differences at the boundaries.

Once the gradients have been applied and estimates of the states at the left and right states, q̂l and

q̂r, have been obtained the limiter is applied to the gradient terms so that the new estimate of the

q̂l is

ql = Qn
j + σj∇Qn

j

Here the non-linear limiter is given by

σj = max[min(βrj, 1), min(rj, β)]

where 0 ≤ σj ≤ 1 and

rj =



















(Qmax
j − Qj)/(q̂l − Qj) q̂l > Qj

(Qmin
j − Qj)/(q̂l − Qj) q̂l < Qj

1 q̂l = Qj

and

Qmin
j = min(Qj, Qi) and Qmax

j = min(Qj , Qi) i = j − 1, j + 1

This slope limiter adds an extra constraint to ensure that if Qi > Qj , then ql < qr. Without this

extra condition very small values of h produce very large values for u = uh/h.

Of course there are many other slope limiters beside those mentioned above. The functions

selected were chosen to highlight the varying nature and complexity of slope limiters available.

The benefits, disadvantages and performance of these limiters are detailed in Section 6.2.

5.3 Treatment of the Source Term

The shallow water wave equations are used to solve many practical problems that necessitate

adding a source term to the homogeneous equations. The derivation provided in Chapter 2 de-

rives a source term based on variable bottom topography. Other influences on this source term
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include Coriolis, friction and wind shear. Various assumptions have to be made when these terms

are included, but these are not considered here.

5.3.1 Fractional-Step Method

The fractional-step method is a standard way to deal with source terms. It replaces

qt + f(q)x = S (5.9)

with the two problems

qt + f(q)x = 0 (5.10)

qt = S (5.11)

which are solved sequentially. The solution to problem (5.9) Qn+1 at time tn+1 is obtained by

first solving the homogeneous equation (5.10) at time tn to give an intermediate solution Q̄n+1.

The ordinary differential equation or inhomogeneous problem (5.11) is then solved using Q̄n+1

to find the complete solution Qn+1. This splitting can be expressed as

Qn+1 = O(∆t)H(∆t)Qn

in which H(t) is the homogeneous solution operator and O(t) is the ordinary differential equation

operator.

Fractional step methods are occasionally unable to accurately reproduce certain physically

trivial situations such as undisturbed motionless water over topography, time independent steady-

flows and small perturbations from such steady states. In these situations qt ≈ 0 and so the flux

term must approximately balance the source terms f(q)x ≈ S. In situations where the flux

and source terms are large, resulting say from time-independent flow over steep topography, the

solutions obtained by the fractional steps of (5.10) and (5.11) must counteract each other.

Other techniques have been developed that specifically address this problem, however these

are not as simple to conceptualise and implement as the fractional step method described here

and so are neglected. One such method based on the central-upwind method described above is

proposed by Kurganov and Levy [36].
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5.4 Temporal Evolution

Thus far we have only discussed the spatial discretisation used to simulate shallow water

flow. However the central-upwind Godunov-type method described in Section 5.1 also requires

a discretisation of time. The semi-discrete scheme proposed in (Section 5.1) written in the con-

servative form
d

dt
Qj(t) = −Fj+1/2(t) − Fj−1/2(t)

∆x
(5.12)

is a system of time-dependent ODEs for which many stable numerical solvers are known. The

following focuses on the explicit Runge-Kutta methods, introduced by Shu and Osher [48], which

lead to step sizes under which the numerical process is TVD. An important feature of this class

of time discretisations is that they are convex combinations of first-order forward Euler steps.

Hence they maintain strong stability properties in any semi-norm of the forward Euler step [47].

5.4.1 First-order Method

The first-order Runge-Kutta temporal discretisation is given by

Qn+1 = Qn + ∆tF (Q, tn) (5.13)

where Fj(Qj , t
n) := Fj−1/2 − Fj−1/2. This algorithm is simple and computationally more effi-

cient than any higher-order methods. However the first-order accuracy of this approximation is

not consistent with the second-order accuracy of the spatial discretisation. For this reason it is

important to consider second-order temporal discretisations.

5.4.2 Second-order Method

The second-order Runge-Kutta method considered here is a two-stage method given by

Q
(1)
j = Qn

j + ∆tF n
j

Qn+1
j =

1

2
Qn

j +
1

2
Q

(1)
j +

∆t

2
F

(1)
j

= Qn
j +

∆t

2
(F n

j + F
(1)
j ) (5.14)

which is also known as the improved Euler approximation. Simply, this method produces an

initial guess Q(1) to the solution at the next time step and then uses (5.14) to refine this guess.
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Simply extending the first-order temporal approximation (5.13) to second-order accuracy is

insufficient. The fractional step method presented in Section 5.3.1 is formally only first-order

accurate in time and so this must also be addressed. This increase in accuracy can be achieved

by adopting the following splitting scheme

Qn+1 = O(∆t/2)H(∆t)O(∆t/2)Qn

Again the inhomogeneous shallow water equations

qt + f(q)x = S

must be replaced with the two problems

qt + f(q)x = 0

qt = S

At each time step the inhomogeneous equation is solved over half a time step. This result is then

used as initial data for the homogeneous problem which is solved over a full time step. Finally

this data is used to again solve the inhomogeneous equation over another half time step. The

resulting approximation is second-order accurate provided both the homogeneous and inhomo-

geneous equations are solved to at least second-order accuracy. This approach was developed by

Gilbert Strang [51] and is often referred to as Strang splitting.

5.4.3 The Courant-Friedrichs-Lewy (CFL) Condition

The CFL condition is a necessary condition of stability for finite volume or finite difference

methods. The approximations provided by such methods will only converge to the exact solution

as the grid is refined if the CFL condition is satisfied. Simply the CFL condition states that

information, propagating at the speeds determined by the eigenvalues of the flux Jacobian matrix

f ′(q), does not skip any cell in a single time step.

For the one-dimensional shallow water equations information propagates at two speeds λ1 =

u −
√

gh and λ2 = u +
√

gh. These values are used to define the Courant number, also known

as the CFL number, given by

ν =
1

2

∆t

∆x
max

p
|λp|
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Explicit methods used to solve hyperbolic equations, such as the Godunov method defined above,

will only be stable if the Courant number is less than one, that is ν < 1. For the first and second-

order time-stepping methods defined above

∆t = min
j=1,...,N

Cr
1

2

∆xj

maxp |λj,p|
(5.15)

where maxp |λj,p| is the maximum absolute wave speed in cell j with length ∆xj . Cr is a constant

which, for the test problems presented here, is set to one unless otherwise specified. The factor

of a half ensures that the local rarefaction fans at each cell interface do not interact. Consult

Figure 5.3. It must be stressed that the CFL condition is a necessary but not sufficient condition

of stability and numerical methods may still exhibit instability.

xj+1/2xj−1/2
t
n

t
n+1

xj

∆x
2

∆x
2

Figure 5.3: Local rarefaction fans at the boundaries of a cell j. To ensure stability information

must not travel a distance further than ∆x/2.

5.5 Boundary Conditions

Thus far we have assumed that the information needed to update cell averages Qn
j is available

in neighbouring cells. However all numerical approximations are computed on a bounded do-

main with a finite set of cells. Cells that lie along the boundary will not have enough information

to be accurately updated. There are two main approaches used to update these cells. The first

approach involves extending the computational domain to include additional cells connected to

those that originally lie along the boundary. The value of these so-called ghost cells are set at the

beginning of each time step and are based on the boundary conditions and occasionally the solu-

tion in the interior domain. These cells provide the necessary information for the cells originally

adjacent to the boundary.
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In one dimension only the cells at the front and end of the domain will require the additional

information carried by these ghost cells. If information is only required from immediately adja-

cent cells then only one ghost cell need be added to each end of the computation domain. If a

method is used that uses information from two cells upstream and/or downstream then two ghost

cells must be added to each end of the physical domain.

The second approach constructs formulas that are case-specific to deal with the special condi-

tions that occur near the boundaries. These formulas depend on the type of method and boundary

condition employed. Ghost cells provide a novel approach to dealing with boundary conditions

that is conceptually simple, however due to the limited scope of this thesis, the more easily im-

plemented formulaic approach was adopted. Boundary conditions are very easy to implement

when using this approach and the central-upwind Godunov method described above. A cell on

the boundary will have a state q = [h, uh]T , which is constant over a single time step. Only

information from cells immediately adjacent to these cells is needed so only the unknown state

on the other side of the boundary need be specified.

For a reflective boundary this unknown state is given by

Qb =

[

h

−uh

]

and for a transmissive boundary

Qb = Q (5.16)

Along a boundary, flow may vary between supercritical and subcritical. For this reason Oliger

and Sundstrom [43] state that the boundary value problem of the shallow water wave equations

is not well-posed in open domains. Such open domains do not occur naturally but are used in

small-scale simulations and are bounded by conditions, such as (5.16), which determine interior

flow as if they were not there at all. To ensure that a solution is unique boundary conditions must

be applied separately for subcritical and supercritical flow.

5.6 Modelling Two-Dimensional Shallow Water Flow

The section follows the work of Zoppou and Roberts [60, 61].

The general conservative form of the two-dimensional (2D) shallow water wave equation is

given by
∂q

∂t
+

∂f

∂x
+

∂g

∂y
= S (5.17)
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where q is the vector of conserved variables, f and g are the flux vectors in the x and y directions

and S represents the source vector. The vectors q, f and g can be expressed in terms of the

primary variables, u, v and h as

q =









h

uh

vh









, f =









uh

u2h + gh2/2

uvh









and g =









vh

uvh

v2h + gh2/2









Here u is the x component of the depth-averaged fluid velocity, v is the y component of the

depth-averaged fluid velocity, h is the water depth, and g is the acceleration due to gravity.

The conservative integral form of the 2D shallow water equation is obtained by integrating

over an arbitrary element Vi (Figure 5.4) and is given by

∂

∂t

∫

Vi

q dV +

∮

∂Vi

e · ~n dS =

∫

Vi

S dV (5.18)

where e = (f, g), ~n is the unit outward vector normal to the boundary ∂Vi, the integrand e · ~n
is the normal flux across a surface with normal ~n and dV and dS are the small area and arc

elements, respectively.

Vi

Figure 5.4: Triangular elements in the 2D finite volume method.

Now we can make use of the rotational invariance property of the shallow water equations by

defining the rotation matrix

Tn =









1 0 0

0 n1 n2

0 −n2 n1
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that aligns the normal ~n = (n1, n2)
T with the x-axis. Using this matrix we can write

e(q) · ~n = T
−1
n f(Tnq) (5.19)

Substituting (5.19) into (5.18) yields

∂

∂t

∫

Vi

q dV +

∮

∂Vi

T
−1
n f(Tnq) dS =

∫

Vi

S dV (5.20)

Here we have assumed that the conserved quantities U are constant within each cell and the flux

across each edge j of the element i is determined by the states of the cells partitioned by the edge

j. Discretising (5.20) gives the basic framework of a finite volume method for solving the 2D

shallow water equations

dQi

dt
+

1

Ai

∑

j∈N(i)

T
−1
ni,j

F̃ (Tni,j
Qi,Tni,j

Qj)Li,j = Si (5.21)

Here N(i) is the set of all elements that share a common edge with element i. If triangular cells

are used the number of elements in N(i) will be three, and the index j corresponding to the sides

of cell i will be in the range [1, 3]. In addition Ai is the area of cell i, Li,j is the arc length of side

j of element i and Si is the source term associated with the cell i. Finally F̃ (Tni,j
Qi,Tni,j

Qj)

is the estimated numerical flux across the edge separating two neighbouring elements. Equation

(5.21) is then used to update the solution.

The problem now involves the solution of a local one-dimensional problem in the direction

normal to the element interface for which the one-dimensional central-upwind Godunov method,

described above, can be used.

5.7 Model Implementation

This section concerns the implementation of the aforementioned central-difference scheme.

The software developed is written using the object-oriented approach of Python. The code

was developed from scratch, to facilitate greater understanding and evaluation of the numerical

technique in question. Use of pre-built software may not have identified some of the numerical

difficulties discussed below. The code constructed is too large to be included in its entirety,

however a brief discussion of the method used to initialise and run a scenario is included in

Appendix A.
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The Python language was chosen because it allows code to be written quickly and easily

changed. Unfortunately this language is not as computationally efficient as lower level languages

such as C. However Python provides means for inserting C routines into python programs

allowing more computationally expensive functions to be written in C to decrease execution

time. However this was beyond the scope of this thesis.

To implement a scenario the user specifies the geometry, the initial free surface elevation

(stage), momentum, boundary conditions (reflective or transmissive) and source terms. A grid is

then created which divides the study area into N cells with 2N vertices. At each vertex i of each

cell j the coordinates xji are specified to allow grids with cells of equal or varying length. The

bed elevation zji, free surface elevation wji and momentum xmji associated with these vertices

are also stored. This information is then used to define the value of these three quantities at the

cell centroids. The centroid bed elevation is given by zcji := (zj1 + zj2)/2 and the centroid

stage by wcji := (wj1 + wj2)/2. Furthermore integer mapping arrays are created to define the

neighbouring cells and vertices of each cell in addition to the outward unit normal vectors of

each cell vertex. These maps reference cells from left to right.

When the model is run, the grid is converted into domain object which represents the study

area, quantities, boundaries and source terms with the domain object also containing methods

for time-stepping, flux calculations, and all other numerical operations pertinent to the model.

This information is specified by a shallow water domain that inherits its main structure from

a more generic domain. This allows the code to be more easily extended to other systems of

conservation laws such as Euler’s equations.

Once the initial conditions have been specified the simulation is run using the routine evolve:

for t in domain.evolve(yieldstep, duration):

<update solution>

The parameter duration specifies the time period over which evolve operates, and control is

passed to the body of the for-loop at each fixed yieldstep. This decouples the internal time-

stepping from the overall time-stepping so that outputs may be interrogated. The length of each

time step is determined from the maximal speeds encountered and the sizes of each cell so that

the Courant-Friedrichs-Lewy (CFL) condition is not violated. This ensures that no information

will skip any cell in one time step.

At each time step the conserved quantities are update by the numerical scheme. Firstly, the

slopes of each conserved quantities for each cell are calculated using a specified slope limiter and
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used to extrapolate the centroid value to the cell vertices. The flux of each conserved quantity is

then computed using the corresponding values, ql and qr, found at the two vertices of neighbour-

ing cells sharing the same coordinates. These fluxes are rotated according to the normals of each

cell vertex to ensure the correct orientation. Water depth h is always used to compute the amount

of water flowing across a cell interface. So if one is using stage as the conserved variable, the

vertex heights needed for the flux calculations are found using hji = wji − zji. If the depth on

either side of the cell face is less than a tolerance δh = 1e−3 the velocity, u = xm/h = uh/h,

reconstructed from the momentum, is set to zero on that side before fluxes are computed. Simi-

larly if depths on both sides of the cell interface are less than this tolerance, the fluxes are set to

zero.

Once fluxes have been computed, source terms are evaluated. The values of each conserved

quantity are updated at each cell centroid using either the first or second-order time-stepping

scheme discussed in Section 5.4. Boundary conditions are then updated. The process is repeated

until the final solution is computed. It must be noted that, in order to limit the scope of the

thesis, varying topography was assumed to be the only source term affecting shallow water flow.

Problems involving terms arising from phenomena such as friction and wind shear were not

considered. This meant that source terms can be updated explicitly with the fluxes.



Chapter 6

Results I: Validation

A suite of procedures need to be considered when validating numerical models of ’real’ sys-

tems. It should address the plausibility of the model properties and the satisfactory reproduction

of observed behaviour including the reproduction of the variability and sensitivity of the sys-

tem [2]. The previous chapters have addressed the choice and plausibility of the central-upwind

Godunov type method (Chapter 5) for modelling shallow water flow, but to this point have not

considered model performance.

Unfortunately numerical models of physical systems can seldom be fully analysed due to

the shear amount of computational power needed to undertake comprehensive sensitivity and

error assessment. Numerous approaches can be adopted but are well beyond the scope of this

thesis. Instead here we consider the use of analytical solutions to help establish the veracity of

our numerical model.

This chapter compares the numerical solution provided by the central-upwind Godunov-type

method against a number of problems with both smooth and discontinuous solutions. Specifi-

cally, performance will be assessed on its ability to simulate three types of problems: (i) dam-

breaks (ii) oscillating planner flow in a frictionless parabolic channel, and (iii) steady flow in

wide frictionless channels. The analytical solutions to these problems are discussed in detail in

Section 3.3.

Together these problem represent a wide range of shallow water flows and test the model’s

ability to deal with the sonic points, the transition from subcritical to supercritical flow, the

wetting and drying of cells, resolution of shocks and rarefaction fans, source terms arising from

varying topography, and the simulation of planar surfaces.

A robust model must produce solutions that converge to the exact solution as the computa-

78
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tional grid is refined. The following investigates the error E between the simulated and exact

water depth and momentum profiles for both steady flows and unsteady discontinuous flows, i.e

dam-breaks. Throughout the remainder of this thesis the L1 absolute error given by

E =
1

N

N
∑

j=1

|q(xj) − Qj | (6.1)

is used to quantify error. Absolute error rather than relative error is used so that the errors

occurring at small values of depth and momentum do not dominate the solution.

All the numerical experiments below are produced on a evenly-spaced grid using second-

order spatial and temporal discretisations unless otherwise specified.

6.1 First and Second-Order Temporal and Spatial Discretisa-

tion

This section concerns the practical implications of first and second-order spatial discretisa-

tions. Specifically the following investigates the performance of the first-order central-upwind

scheme with first-order time-stepping, the second-order central-upwind scheme with first-order

time-stepping and the second-order central-upwind scheme with second-order time-stepping.

Such a discussion is absent from most texts, but as will be seen is extremely important.

6.1.1 Accuracy

Model performance is evaluated on the ability to simulate unsteady subcritical flow result-

ing from a dam-break. Consider the dam-break problem in a channel of length L = 2000m

subdivided into 100 cells of equal length with an upstream water depth of h1 = 10m and a down-

stream water depth of h0 = 5m. The exact depth and momentum profiles of the resulting flow

are given by (3.17) and (3.18). The first-order piecewise constant numerical solution obtained

at t = 30s using first-order forward Euler time-stepping is shown in Figure 6.1. This scheme is

highly diffusive and highlights the need for a higher order of accuracy.

In contrast the second-order numerical solution obtained at t = 30s using first-order forward

Euler time-stepping and the simple minmod slope limiter (Figure 6.2) is much less diffusive

and the simulation of the shock is greatly enhanced. In addition the absolute error in the water
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Figure 6.1: Numerical solution of the dam-break problem using 100 cells where h1 = 10m and

h0 = 5m obtained at t = 30s with first-order spatial discretisation and first-order time-stepping.

profile has also decreased from 0.08950199 to 0.03412096 and the absolute error in the mo-

mentum from 0.72740844 to 0.28541721. However the second-order spatial reconstruction has

introduced some large artificial oscillations. Refining the computational grid does not dampen

these oscillations sufficiently. In fact as cell size is decreased the severity of these oscillations

increases. This is highlighted in Figure 6.3(a) which compares the numerical solution against the

analytical solution when the channel is divided into 25, 600 cells. The severity of the oscillations

becomes so great that, at small enough grid sizes, a further reduction in cell lengths will increase

the absolute error in the solution. Furthermore the position of the rarefaction fan is not accurately

captured at these finer grid sizes, as shown in Figure 6.3(a). It was also found that the different

choices of slope limiters did not produce more accurate results. In fact all the limiters detailed in

Section 5.2 produced worse results. This is highlighted in Figure 6.3(b).

The reader can be assured that great care was taken to ensure that these two sources of error

are indeed artifacts of the numerical method presented here and not due to problematic software.

The important discovery made was that the second-order spatial method presented here requires

a time discretisation of the corresponding order.

Figures 6.4(a) and 6.4(b) compare the analytical solution of the dam-break at t = 30s using

both second-order spatial and time discretisation. The oscillations present in Figures 6.2, 6.3(a),
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Figure 6.2: Numerical solution of the dam-break problem using 100 cells where h1 = 10m

and h0 = 5m obtained at t = 30s with second-order spatial discretisation and first-order time-

stepping and minmod slope limiting.

and 6.3(b) have been eliminated. The scheme has become slightly more diffusive. However

less diffusive schemes can be constructed by using more sophisticated slope limiters. When the

domain is divided into 100 cells the absolute error in the water profile is 0.05531952 and the

absolute error in the momentum is 0.44613966. This is slightly larger than the error obtained

using first-order time-stepping, but the error obtained using smaller cell sizes is much smaller

using second-order temporal evolution than when first-order time-stepping is used. For example

when the computational domain is divided into 1,600 cells the absolute error in the water depth

is 0.0057452598 and 0.0039501822 for first and second-order time-stepping respectively and the

absolute error in the momentum is 0.0503602339 and 0.0344664612.

6.1.2 Efficiency

Table 6.1 contains the wall time required to solve the subcritical solution above, at t =

30s. The average of ten runs for each grid cell is given to ensure these times are an accurate

representation of the true running time. The first-order spatial and temporal method is much

faster than the second-order methods. The second-order central upwind-scheme with first-order

time-stepping is approximately twice as slow and the completely second-order method is another
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Figure 6.3: Numerical solution of the dam-break problem where h1 = 10m and h0 = 5m

obtained at t = 30s with first-order time-stepping and using (a) 25,600 cells and Minmod slope

limiting (b) 800 cells and Superbee limiting.
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Number of Cells First-Order First/Second-Order Second-Order

100 0.63 s 1.39 s 4.75 s

200 2.45 s 5.38 s 18.61 s

400 9.74 s 21.09 s 73.65 s

800 39.59 s 84.37 s 294.94 s

1600 155.31 s 335.37 s 1176.22 s

Table 6.1: Average wall time (10 runs per grid size) taken to simulate subcritical dam-break flow

at t = 30s.

three times as slow. We can also see from Table 6.1 that the running time of all three models

increases by a factor of four every time the cell size is halved. This suggests that the algorithm

central-upwind scheme is an O(n2) algorithm.

Unfortunately the increased accuracy of second-order time-stepping is accompanied by a re-

duction in computational efficiency. This is an unavoidable limitation, as the first-order central-

upwind scheme is too diffusive and the second-order scheme with first-order time-stepping is

unstable. However it may be possible to reduce the running time of the purely second-order

method to only twice that of the method using first-order time-stepping. Currently at the be-

ginning of each time step the second-order temporal method computes the upcoming time step

based on the fluxes of the newly updated conserved quantities, and then undertakes two further

flux computations before updating the numerical solution. In contrast the first-order temporal

evolution requires only one set of flux computations and so is approximately three times as fast.

The number of flux computations involved with second-order time-stepping can be reduced by

approximating the time step size by the time step size at the previous time step. However situa-

tions may arise for which this estimate is very poor. Rigorous testing needs to be carried out to

investigate the validity of this step and was not attempted here.

6.2 Dam-Break Problems

One-dimensional dam-break problems represent the idealized instantaneous collapse of an

infinitessimally-thin dam wall in a wide, infinitely-long horizontal channel. These problems ad-

mit discontinuous solutions and so provide a tough test of the ability of a numerical model to

resolve discontinuities and rarefaction fans and, in certain cases, flow over dry beds. These prob-
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Figure 6.4: Numerical solution of the dam-break problem where h1 = 10m and h0 = 5m

obtained at t = 30s with second-order time-stepping and minmod slope limiting using (a) 100

cells (b) 25,600 cells.
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lems are also the most appropriate tests of the robustness of the cell reconstructions of different

slope limiters. To accurately simulate a dam-break the slope limiter must reconstruct linear and

quadratic polynomials, discontinuities and the interface between wet and dry regions. The fol-

lowing compares the numerical solutions of the central-upwind Godunov, utilising various slope

limiters, against the corresponding exact solution for dam-breaks in channels with finite water

depth everywhere and in channels with a dry bed downstream of the dam wall.

6.2.1 Subcritical Flow

Consider the dam-break problem in a channel of length L = 2, 000m and conveying only

subcritical flow, subdivided into 400 cells of equal length with an upstream water depth of h1 =

10m and a downstream water depth of h0 = 5m. Figure 6.5 shows the depth and momentum

profiles of the flow at t = 30s using the Superbee limiter. Here the analytical and numerical

solutions are nearly indistinguishable. The position of both the shock and rarefaction fan has

been captured accurately and only a small amount of diffusion is present. Very similar results

are produced by all the limiters defined in Section 5.2.

Figure 6.5: Numerical solution of the dam-break problem using 400 cells where h1 = 10m and

h0 = 5m obtained at t = 30s using second-order central-upwind Godunov-type method with

second-order time-stepping and Superbee slope limiting.

Table 6.2 contains the absolute error in the depth Eh and momentum Euh for each limiter.
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We see that the minmod limiter provides the least accurate reconstruction of both the depth

and momentum and the Superbee limiter provides the best approximation. However, with the

exception of the van Albada limiter, the performance of the other limiters is very similar.

Slope Limiter Eh Euh

van Leer 0.0109987392467 0.0895727806613

van Albada 0.0123154434756 0.100902704015

Minmod 0.0148438095397 0.122137908823

Kurganov minmod 0.0105356558074 0.0852279046185

Superbee 0.00945161500114 0.0767785816693

Pyvolution 0.0105356558074 0.0852279046185

Table 6.2: Absolute error in numerical approximation of subcritical dam-break flow using the

second-order central-upwind method, second-order time-stepping and six different slope lim-

iters.

6.2.2 Supercritical Flow

The problem posed above only generates subcritical flow and so is not a rigorous test of a

numerical scheme. The dam-break problem involving supercritical flow tests the model’s ability

to deal with the transition from subcritical to supercritical flow. Some methods produce entropy-

violating solution at these so-called sonic points because the scheme is unable to establish the

direction of the flow at a point with zero horizontal momentum.

By simply changing the downstream depth of the previous problem to h0 = 0.1m we can

produce an analytical solution describing supercritical flow. Table 6.3 contains the absolute

error in the depth and momentum for each limiter. We see that the minmod limiter provides the

least accurate reconstruction of both the depth and momentum, but the Superbee limiter does

not reconstruct the solution to the same degree of accuracy as when used to model subcritical

dam-break flow. Refer to Figure 6.6(b). The undershoot at the bottom of the rarefaction fan is

typical of the limiter producing the other poor results. The van Leer limiter now provides the

best approximation. See Figure 6.6(a).
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(a)

(b)

Figure 6.6: Numerical solution of the dam-break problem using 400 cells where h1 = 10m and

h0 = 0.1m obtained at t = 30s using second-order central-upwind Godunov-type method with

second-order time-stepping and the (a) van Leer limiter (b) Superbee limiter.
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Slope Limiter Eh Euh

van Leer 0.0180311350992 0.0933302021086

van Albada 0.0186836509548 0.101657530186

Minmod 0.0206630247901 0.119619309589

Kurganov Minmod 0.0186711830305 0.0953878733192

Superbee 0.0204303287425 0.107340156459

Pyvolution 0.0186711830305 0.0953878733192

Table 6.3: Absolute error in numerical approximation of supercritical dam-break flow using the

second-order central-upwind method, second-order time-stepping and six different slope lim-

iters.

6.2.3 Dry Bed Flow

The ability to simulate flow over dry beds is a very desirable property of any model used to

simulate shallow water flows. Consider a dam-break problem with a finite water depth upstream

and a dry bed h0 = 0m downstream. The analytical solution to this problem is given by (3.19)

and (3.20).

Table 6.4 contains the absolute error in the depth and momentum for each limiter. The

Kurganov minmod, Superbee, and Pyvolution produce very poor reconstructions. These lim-

iters are entirely unable to deal with the interface between wet and dry cells. Refer to Figures

6.7(a), 6.7(b) and 6.8(a).

Slope Limiter Eh Euh

van Leer 0.0175769943708 0.0973820780907

Van Albada 0.0183464833293 0.107163330128

Minmod 0.0213394124517 0.138865621084

Kurganov Minmod 0.0667542741838 0.648555806348

Superbee 0.160237677428 1.50142285659

Pyvolution 0.109509661578 1.08420278974

Table 6.4: Absolute error in numerical approximation of dry dam-break flow using the second-

order central-upwind method, second-order time-stepping and six different slope limiters.

Again the van Leer limiter produces the most accurate results. However even this limiter, and
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the minmod and van Albada limiters, are unable to deal with the wet-dry interface perfectly. Both

the minmod and van Albada limiters underestimate the speed of the advancing wet front over the

dry bed. The van Leer limiter also underestimates this speed but not to the same extent. This

limiter does however introduce an artificial amount of water downstream of the advancing front.

This latter phenomena was eliminated by reducing the grid size of the computational domain.

The inaccuracy occurring at the interface between the wet and dry cells indicates that further

work needs to be done to produce better approximations of water depth and velocity in these

regions.

The above discussion has shown that the van Leer limiter produces the best approximations

of both the water depth and momentum profiles resulting from a number of dam-break situations.

It is able to accurately capture the position of shocks and rarefaction fans, smooth regions and to

a lesser, but still reasonable, degree advancing wet fronts. The van Albada and minmod limiters

also perform well in all situations.

The analysis also highlights the weakness of the Kurganov minmod, Superbee and Pyvolution

limiters when modelling flow over dry beds. Although these slope limiters accurately resolve

flow with finite-water depth everywhere, their dramatic failure reproducing dry bed flows prevent

them from being used in any robust numerical scheme.

6.2.4 Convergence

A robust model must produce solutions that converge to the exact solution as the compu-

tational grid is refined. The errors between the simulated water depth Eh and momentum Euh

were calculated for the three hypothetical dam-break problems above at t = 30s for successively

smaller cell sizes. Recall that absolute error rather than relative error is used so that the error oc-

curring at small values of depth and momentum do not dominate the solution. This is especially

important for the dry dam-break problem which produces the worst approximation of flow at

the interface between wet and dry cells. At this point the analytical solution assumes very small

values and for even small absolute errors this will produce large relative error.

Consider the dam-break problem in a channel of length L = 2000m conveying subcritical

flow with an upstream water depth of h1 = 10m and a downstream water depth of h0 = 5m.

Figures 6.10(a) and 6.10(b) show the L1 error of the numerical solution for decreasing cell sizes.

Here the straight line represents the exact first-order convergence rate. Although a second-order

method has been used these figures clearly demonstrate a first-order convergence rate. However
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Figure 6.7: Numerical solution of the dam-break problem using 400 cells where h1 = 10m and

h0 = 0.0m obtained at t = 30s using second-order central-upwind Godunov-type method with

second-order time-stepping and the (a) Kurganov minmod limiter (b) Superbee limiter.



CHAPTER 6. RESULTS I 91

(a)

(b)

Figure 6.8: Numerical solution of the dam-break problem using 400 cells where h1 = 10m and

h0 = 0.0m obtained at t = 30s using second-order central-upwind Godunov-type method with

second-order time-stepping and the (a) Pyvolution limiter (b) van Leer limiter.
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(a)

(b)

Figure 6.9: Numerical solution of the dam-break problem using 400 cells where h1 = 10m and

h0 = 0.0m obtained at t = 30s using second-order central-upwind Godunov-type method with

second-order time-stepping and the (a) Minmod limiter (b) Van Albada limiter.
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the central-upwind scheme presented here can be considered quasi second-order. That is the

scheme is second-order in smooth regions and first-order close to shocks. This becomes evident

when looking at steady flows (Section 6.4). First-order convergence is also demonstrated by

Figures 6.11(a) and 6.11(b) which were obtained simulating a dam-break with an upstream water

depth of h1 = 10m and a downstream water depth of h0 = 0.1m.

Finally consider the dry dam-break problem. As the grid is refined, the computational solu-

tion approaches the exact solution with approximately first-order accuracy. See Figures 6.12(a)

and 6.12(b). At the finest resolution the convergence rate decreases due to the inability of the

central-upwind scheme to completely resolve the advancing wet front. For coarser grid sizes this

problem is masked by the larger errors in other areas. However as the grid is refined the error in

these areas decreases faster than that at the wet/dry interface. Again this fact highlights the need

for better approximations of water depth and velocity in this region.

6.3 Oscillating Planar Flow in a Frictionless Parabolic Canal

Flow in parabolic canals and basins admits an interesting class of analytical solutions which

can be used to test the accuracy of numerical models of shallow water flow. Consider oscillating

flow in a canal with no horizontal velocity in the y-direction, a maximum equilibrium water

depth of z∞ = 10m, and an equilibrium horizontal water surface length of 2Lx = 5, 000m.

Here the free surface oscillates with an amplitude of A0 = Lx/2 and a period of T = 1122.0

and the analytical solution of the free surface and water velocity is given by (3.21) and (3.22),

respectively.

This problem proved to be the harshest test of the central-upwind scheme. Although the

problem is smooth, the numerical scheme must constantly resolve the wetting and drying of

cells and simulate the highly complex reversal of momentum that occurs when the planar surface

ascending the side of the canal slows, stops and begins descending. When conserving stage

(rather than water depth) the central-upwind scheme was very slow, taking an average time of

36.40 seconds to approximate the solution at t = 841.5s on a grid consisting of 100 cells.

Instead of reconstructing the elevation of the fluid surface by constructing limited slopes

based on the value of stage at each cell centroid, one can equally reconstruct the free surface pro-

file based on the water depth at the centroid. The resulting water surface profiles are markedly

different as shown in Figures 6.13 and 6.14. When conserving depth the model runs approx-

imately twice as fast as the scheme conserving stage. An average time of 16.28 seconds was
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(b) Momentum (uh).

Figure 6.10: Convergence and accuracy of the numerical method when modelling a subcritical

dam-break. The solid line is ∝ ∆x, and points × are the L1 absolute error, given increasing

computational resolution.
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(a) Water depth (h).
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(b) Momentum (uh).

Figure 6.11: Convergence and accuracy of the numerical method when modelling a supercritical

dam-break. The solid line is ∝ ∆x, and points × are the L1 absolute error, given increasing

computational resolution.
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Figure 6.12: Convergence and accuracy of the numerical method when modelling a dry dam-

break. The solid line is ∝ ∆x, and points × are the L1 absolute error, given increasing compu-

tational resolution.
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Number of Cells Stage w Depth h

100 36.40 s 16.28 s

200 118.55 s 63.69 s

400 412.93 s 253.22 s

800 1481.12 s 1016.16 s

1600 5391.47 s 4062.42 s

Table 6.5: Average wall time (10 runs per grid size) taken to approximate the solution of oscil-

lating planar flow in a parabolic canal at 841.5s when conserving stage and conserving depth.

required to simulate one oscillation on a grid consisting of 100 cells. The decrease in speed

experienced when conserving stage w is a result of the small time steps generated in partially-

wetted – cells with only one submerged vertex. Time step sizes are calculated using (5.15)

which is inversely proportional to the maximum absolute wave speed found in the computational

domain. In each cell the wave speed u is found by dividing the momentum uh in the cell by

the depth h in the cell. When conserving stage the depth in partially-wetted cells can be small

whilst the corresponding value of momentum is still relatively large, producing large absolute

maximum speeds and thus small time steps. The frequency and severity of this phenomenon is

reduced when depth is used to reconstruct the free surface profile. However as the computational

grid is refined the differences between reconstructions of stage and depth become less evident

and the model speeds converge accordingly. Consult Table 6.5. The two types of reconstruction

produce results of similar accuracy.

The evolution of the numerical solution was simulated using the second-order central-upwind

scheme on a grid consisting of 400 cells of equal length. The numerical solutions at t = T/2,

t = 3T/4, t = T and t = 5T/4 are shown in Figures 6.15(a), 6.15(b), 6.16(a) and 6.16(b). The

form of the solution at the aforementioned times represents the most severe test of the central-

upwind scheme this problem provides. At t = T/2, t = T the water is at rest and the momentum

of the fluid is changing direction. At the other times the magnitude of the fluid velocity is greatest.

At all these times the numerical and analytical solutions of the water depth are indistinguishable,

as are the numerical and analytical solutions of momentum at t = 3T/4 and t = 5T/4. The

absolute error in the water depth Eh and momentum Euh at each of these times is shown in Table

6.6. This table shows that the error in water depth is larger when the velocity is greater. However

the error in the depth reconstruction decreases again with the velocity. This is not true of the
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Figure 6.13: Second-order accurate free surface profiles with gradients, based on centroid stage

values, subject to the minmod slope limiter with (a) stage at centroid of partially-wetted cell less

than or equal to the associated bed elevation (b) stage in partially-wetted cells greater than the

associated bed elevation.
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Figure 6.14: Second-order accurate free surface profile with gradients, based on centroid depth

values, subject to the minmod slope limiter with (a) non-positive depth at centroid of partially-

wetted cells (b) positive depth at centroid of partially-wetted cells.
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error in the momentum profile which increases with time. Fortunately this error is bounded and

is recovered with each oscillation.

t Eh Euh

561.0s 0.0022157967 0.0335704661

841.5s 0.0049029748 0.0484488349

1122.0s 0.0028329655 0.0649583278

1402.5s 0.0074963810 0.0775239018

Table 6.6: Absolute error in numerical approximation of oscillating planar flow in a frictionless

parabolic canal, at four different times, using the second-order central-upwind method, second-

order time-stepping and the van Leer slope limiter.

6.4 Steady Flow

Fractional step methods are occasionally unable to accurately reproduce certain physically

trivial situations such as undisturbed motionless water over topography, time-independent steady

flows and small perturbations from such steady states. The simulation of flow at rest and flow

over a bump enables one to check that the source terms are correctly evaluated.

Consider a horizontal frictionless channel, 50m in length, that contains a parabolic obstruc-

tion centred at xmax = 25m with a maximum elevation of zbmax = 0.2m and width of 2b. The

bed elevation of this channel is given by

zb(x) =







zbmax

[

1 −
(

x−xmax

b

)2
]

xmax − b < x < xmax + b

0 otherwise
(6.2)

and, as shown in Section 3.3.3, the water surface profile can be calculated by solving

D3 + D2

(

H − 1 − Fr2
0

2

)

+
Fr2

0

2
(6.3)

where h0 = 0.5m, u0 = 0.6m/s, D = h(x)/x and Fr0 = u0/
√

gh0. The bisection method was

used here.

The numerical solution to this problem was found using the second-order central-upwind

scheme. Figure 6.17 compares the analytical and numerical solution of steady flow in a channel
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(a) t = T/2

(b) t = 3T/4

Figure 6.15: Simulation of an oscillating free surface in a frictionless parabolic canal with a

period of T = 1122.0s and z∞ = 10m, Lx = 2500m, A0 = Lx/2, f = 0, and v = 0
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(a) t = T

(b) t = 5T/4

Figure 6.16: Simulation of an oscillating free surface in a frictionless parabolic canal with a

period of T = 1122.0s and z∞ = 10m, Lx = 2500m, A0 = Lx/2, f = 0, and v = 0.
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divided into 400 cells of equal length, ∆x = 0.125. The analytical and steady numerical solu-

tions obtained are indistinguishable. However we note that, at the discontinuities in the deriva-

tives of the momentum profile peaks, in the error are seen. This is a phenomenon experienced by

many numerical schemes and cannot be eliminated easily.

Demonstrating convergence to this exact solution is an important test for the numerical

method, since it tests the ability of the scheme to simulate smooth solutions. Figures 6.18(a)

and 6.18(b) shows convergence of the solution as the grid is refined. Figure 6.18(a) demonstrates

the second-order accuracy of the method when approximating water depth. However the compu-

tational approximation of the water momentum converges to the true solution more slowly. This

slower rate of convergence is caused by the peaks in the error found at the discontinuities in the

derivatives of the momentum profile. The error at these points is large relative to the error in

other regions and so dominates the total error. Thus because the larger errors only decrease at a

rate proportional to ∆x the same is true for the total L1 error.

Figure 6.17: Steady-state water surface profile and velocity predicted at t = 25s in a horizontal

frictionless channel, with a parabolic obstruction, conveying a subcritical flow of q = 0.3m2/s.

Results obtained using the second-order central-upwind scheme with h0 = h1 = 0.5m imposed

at the boundaries.
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1 0 � 1 1 0 0 1 0 1 1 0 2C e l l l e n g t h ( m )1 0 � 81 0 � 71 0 � 61 0 � 51 0 � 41 0 � 31 0 � 2
E rror

(a) Water depth (h).

1 0 � 1 1 0 0 1 0 1 1 0 2C e l l l e n g t h ( m )1 0 � 61 0 � 51 0 � 41 0 � 31 0 � 21 0 � 11 0 0
E rror

(b) Momentum (uh).

Figure 6.18: Convergence and accuracy of the numerical method when modelling steady flow.

The solid line is ∝ ∆x2, and points × are the L1 absolute error, given increasing computational

resolution.
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6.5 Conclusion

This chapter investigated the veracity of the second-order central-upwind scheme by com-

paring the numerical model output against a number of analytical solutions. The model is able

to accurately resolve shocks and simulate steady flow over rapidly-varying topography.

This second-order central-upwind scheme was initially implemented using a first-order for-

ward Euler time-stepping method. It was found, however, that the second-order central-upwind

scheme requires a time discretisation of the corresponding order. When the spatial and temporal

discretisations are inconsistent, spurious oscillations pollute the solution and the amplitude of

these oscillations increases, as the computational grid is refined. The second-order time-stepping

method implemented is less computationally efficient. Nevertheless the increase in accuracy

and the inaccuracies of the first-order temporal discretisation justify the increased computational

effort.

A range of limiters were tested for the second-order central-upwind scheme. The Pyvolution,

Superbee and Kurganov minmod limiters produce reasonable reconstruction of subcritical and

supercritical flow from dam-breaks. But they produced extremely poor results when modelling

dam-break over a dry bed. Due to the severity of the inaccuracies, use of these three limiters must

be avoided. The van Leer limiter produced the most accurate results, followed by the van Albada

limiter and the more diffusive minmod limiter. However all three limiters underestimated the

velocity of the advancing wet of a dry dam-break. Further work is needed to find an appropriate

method to adjust the limiting procedure at wet and dry interfaces.

The scheme is second-order accurate when modelling smooth flows and first-order accurate

when modelling flow characterised by shocks. Subcritical flow over a parabolic obstruction

produces smooth velocities and free surface profiles. As the computational grid is refined the

numerical approximations of depth converge to the exact solution at a rate proportional to the

square of the grid length. However the numerical approximation of momentum only converges

at a rate proportional to the size of the grid length. This is caused by the larger errors found

at the discontinuities in the derivatives, which dominate the solution and only decrease at a rate

proportional to the grid length.

When finite water depth exists throughout the computational domain a dam-break will pro-

duce a shock. In this situation the central-upwind scheme produces numerical solutions that

converge to the exact solution at a rate proportional to the cell length. When a dam-break occurs

over a dry bed, a shock is not produced but the model still only produces first-order accurate so-
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lutions. As the grid is refined the interface between the advancing wet front and the dry bed poses

the most difficulties. Again this is related to the inaccuracies of the slope limiting procedure at

the wet/dry interface.

Simulating oscillating planar flow in a parabolic canal proved the most severe test of the

central-upwind scheme. Simulations conserving stage took significantly longer to execute than

simulations conserving depth. The longer execution times are due to the smaller time steps

required by the scheme conserving stage. The stage is reconstructed in a manner that can produce

small values of depth and large values of momentum, resulting in large estimates of maximum

wave speeds and consequently small time steps. The difference between execution times of

the two schemes decreases as the computational grid is refined. Both schemes produce similar

errors. The author believes that even more accurate results can be produced by employing a more

plausible representation of the physical mechanisms of the wetting and drying of cells.



Chapter 7

Results II: Modifying the Wetting and

Drying of Cells

As shown in the previous chapter, accurately modelling wetting and drying is one of the

major challenges of simulating shallow water flow with finite volume methods. Finite volume

methods relate the volume of fluid in a cell to the average depth in that cell. However in partially-

wetted cells, in which only one vertex is submerged by water, this centroid value is an inaccurate

representation of the average depth. For example, the linear reconstruction of the fluid surface

in a wetted cell may produce a free surface elevation wc that is below the bed elevation at the

centroid zc. See Figure 7.1.

If the surface of a partially submerged cell produces a surface elevation at the centroid less

than the bed elevation at the centroid, the central-upwind described previously sets the stage at

the centroid equal to the bed elevation at the centroid. If depth is being conserved rather than

stage the water depth at the centroid is set to zero. Gradients are then calculated, and limited

based on this new surface.

Begnudelli and Sanders [3] advocate another approach which reconstructs the water surface

in partially-wetted cells in a manner that more accurately represent the physical mechanisms of

the wetting and drying of cells. The following is adapted from their work on two-dimensional

shallow water flow on unstructured triangular grids. The method proposed is based on volume

free surface relationships (VFRs) that relate the volume of fluid in a cell to the elevation of the

free surface (stage) in that cell. In particular they use the fact that the average flow depth hc in

each cell is equal to the ratio of the volume of fluid V in each cell to the cell area A. In one

dimension the average flow depth is equal to the ratio of the area of fluid in each cell and the

107
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xjxj−1/2 xj+1/2

Fluid

B
ed

zc

wc

Figure 7.1: Surface profile of a partially wetted cell with a free surface elevation that is below

the bed elevation at the centroid.

length of the cell L.

In wet cells, cells with both vertices submerged, the free surface elevation at the centroid is

set to be wc = hc + zc. However the same equality does not hold in partially-wetted cells and so

the surface in partially-wetted cells must be updated differently. This is in contrast to the previ-

ously described method which updates all conserved quantities in a cell regardless of the amount

of fluid present. For these cases Begnudelli and Sanders developed VFRs to determine the rela-

tionship between the stage wc and the average depth hc The following concerns the volume fluid

ratios for one-dimensional domains.

7.1 Volume Free Surface Relationships

Let the vertex coordinates of the jth cell be (x1, x2) and the corresponding bed elevations

and surface elevations be (z1, z2) and (w1, w2) respectively. The following assumes that z1 ≤ z2,

however similar expressions can be easily obtained for z1 ≥ z2 by rearranging the vertex indices

in an appropriate manner.

The VFR relating stage to depth is dependent on which cell vertex is submerged and the slope

of the free surface in that cell. Trivially if w1 ≤ z1 and w2 ≤ z2 then no fluid is in the cell and

hc = 0. If w1 > z1 and w2 < z2 (Figure 7.2 (a)) the VFR is given by
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w1

w2

b2

b1

(a) (b)

Figure 7.2: Water areas in partially-wetted cells when (a) w1 > z1 and w2 < z2 and (b) w1 <

z1 < z2 < w2

h =
A

L
=

(w1 − z1)(w1 − z1)

2(z2 − z1 + w1 − w2)
(7.1)

The above VFR is also used when w2 < z1 < z2 < w1. If b1 < w1 < w2 < b2, as shown in

Figure 7.2 (b)

h =
A

L
=

(w2 − z2)(z2 − w2)

2(z2 − z1 + w1 − w2)
(7.2)

The above VFR is also used when w1 < z1 and z2 < w2

These fluid volume ratios are used to determine the correct average depths in each cell given

the free surface profile at t = 0. The initial stage profile is then used to obtain left and right states

at each cell interface using hji = wji − zji, where hji is the water depth at the ith vertex of the

jth cell. The central-upwind method is then used to evolve the solution through time to obtain

new estimates of the average depth in each cell. Here the conserved quantities updated are water

depth h and momentum uh. In partially-wetted cells the velocity is set to zero.

Once the values of depth and momentum have been updated at the centroids the free surface

elevation at each centroid wc must be computed using inverse VFRs that relate the updated aver-

age depth hc in each cell to the stage wc. This inverse problem is much more complex than the

forward problem. At the start of the next time step the surface elevation in every cell is unknown

as is the wet or dry status of each of cell. Although a cell maybe wet at the beginning of the

previous time step it may have become partially wet or dry and, similarly, a dry cell may have

become wet and a partially-wetted cell dry or completely wet.

We must first determine the stage at the vertices of every cell. In a particular cell the stage

value at these vertices represents two unknowns that require two points of information – the

average depth hc (known) and the slope of the stage in that cell (unknown). The simplest solution

is to approximate the slope by the slope in that cell at the previous times step. However when
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implemented, and used to simulate oscillating planar flow in a canal, this approach was unstable

and no result could be obtained. Alternatively the slope can be approximated using upwind,

central, or downwind differencing. However this approach requires that the stage at each cell

centroid be known, which it is not.

Begnudelli and Sanders [3] address this problem by assuming that the stage in partially-

wetted cells is uniform. However, this assumption does not address the fact that the number and

location of partially-wetted cells is not known. Instead we must initially assume that the surface

in every cell is horizontal. The resultant forward and inverse VFRs are discussed below.

If z1 < z2 (refer to Figure 7.3(a)) the forward VFR is given by

hc =
1

2

(wc − z1)
2

(z2 − z1)
(7.3)

and the associated inverse VFR is

wc =
√

2(z2 − z1)hc + z1 (7.4)

Similarly if z1 > z2 the forward VFR is given by

hc =
1

2

(wc − z2)
2

(z2 − z1)
(7.5)

and the inverse VFR by

wc =
√

−2(z2 − z1)hc + z2 (7.6)

(a) (b)

z1

z2

z1

z2

wc

wc

Figure 7.3: Water areas in (a) a partially-wetted cell z1 < wc ≤ z2 and (b) a wet cell wc < z2.

Here stage is assumed to be uniform in each cell.

If hcj ≤ 0 the cell is dry. If the value of hcj = A/L ≥ |z2 − z1|/2 the cell is deemed wet and

the stage at the centroid is given by wcj = hcj + zcj. This is the maximum area that a horizontal

surface can make with the bed elevation in the cell before both vertices are submerged. Refer

to Figure 7.3 (b). Smaller values of hcj indicate partially-wetted cells. The elevation of the free
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surface wcj in these cells is then calculated from the newly updated value of average water depth

hcj using (7.4) or (7.6). Unfortunately this classification is not perfect. Situations may arise

for which a wet cell is wrongly classified partially wet because the average depth of the cell is

less than |z2 − z1|/2. Refer to figure 7.4. A solution to this problem is not trivial and maybe

intractable. Further intense scrutiny is required.

True wate
r surfac

e

hc

z1

z2

Reconstructed
water surface

wc

Figure 7.4: A Condition which results in the incorrect classification of a wet cell as partially-

wetted.

Once the stage at the centroid of each cell has been determined the slopes of stage w and

momentum uh are then computed and used to determine the left and right states at each cell

interface. Note, that although water depth h is a conserved variable here, we calculate and limit

slopes of the free surface elevation w to more accurately reconstruct planar surfaces.

Begnudelli and Sanders suggest that the centroid values be distributed to the cell vertices

irrespective of the cells wet/dry status. However it was found that, at least for the central-upwind

Godunov scheme, a cell’s status must be taken into account. If slopes in partially-wetted cells

are calculated and found to be non-zero then one can no longer ensure that the stage values at the

vertices are updated in a way that preserves the VFR.

7.2 Overdraft

The time stepping methods described in section §5.4 may cause more water than the amount

stored to be removed from a cell – overdraft. To ensure that centroid depths remain non-negative,

i.e. hc ≥ 0. Begnudelli and Sanders propose that the excess amount of water removed be recov-

ered from the appropriate neighbouring cell. This cell must satisfy the following two properties:
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• Water flowed into the neighbouring cell from the over drafted cell during the time period

when the overdraft occurred

• The storage in the neighbouring cell exceeds the overdraft.

The CFL condition provides another means of dealing with overdraft. Previously the central-

upwind scheme was evolved with

∆t = min
j=1,...,N

Cr
1

2

∆xj

maxp |λj,p|
(7.7)

where maxp |λj,p| is the maximum absolute wave speed in cell j with length ∆xj . However

we can ensure no overdraft occurs by setting ∆x equal to the length of the cell submerged by

water. In wet cells ∆x = x2 − x1 and in partially-wetted cells ∆x = (−1)i(xi − x) where

i = 1, 2 is the index of the submerged vertex and x is the point at which the stage intercepts the

bed. Unfortunately, due to time constrains, software implementing this second approach was not

finished.

7.3 Oscillating Planar Flow in a Frictionless Parabolic Canal

Again consider the problem of oscillating flow in a canal with no horizontal velocity in the

y-direction, a maximum equilibrium water depth of z∞ = 10m, an equilibrium horizontal water

surface length of 2Lx = 5000m. Here the free surface oscillates with an amplitude of A0 = Lx/2

and a period of T = 1122.0. This problem was solved using the second-order central-upwind

scheme on a grid consisting of 400 cells of equal length. The numerical and analytical solutions

at two different times are shown in Figures 7.5(a) and 7.5(b).

These plots show that the central-upwind scheme with the new wetting and drying procedure

is less accurate than the solution obtained without the modification. The approximation of the

fluid’s momentum is extremely poor. Simply setting the velocity equal to zero in partially-wetted

cells is inadequate. More accurate predictions of the velocities of wetting fronts is needed. Much

greater accuracy can be obtained by using the analytical solution to reconstruct the momentum

of the fluid at each time step and observing only the algorithms ability to simulate water depth.

However due to the high correlation between momentum and depth this is not a very interesting

or unexpected result. Various numerical experiments that used the analytical value of momentum

in only partially-wetted cells were also carried out. However no benefits were noticeable.
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(a)

(b)

Figure 7.5: Simulation of an oscillating free surface in a frictionless parabolic canal with a

period of T = 1122.0s and z∞ = 10m, Lx = 2500m, A0 = Lx/2, f = 0, and v = 0, with new

reconstructions in partially-wetted cells.
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Here we conclude that the algorithm proposed by Begnudelli and Sanders is not as simple

as their published work implies. Some necessary information is not given and this leads to

the inconsistencies regarding cell classification and stage reconstruction discussed above. The

basic premise of their work, however, is credible and worth exploring further. Here we conclude

that the algorithm proposed by Begnudelli and Sanders is not as simple as their published work

implies. Some necessary information is not given and this leads to the inconsistencies regarding

cell classification and stage reconstruction discussed above. The basic premise of their work,

however, is credible and worth exploring further.



Chapter 8

Conclusions

In this thesis a mathematical derivation of the two-dimensional shallow water wave equations

has been given. We began with the simplest assumptions leading to Euler’s equations for a perfect

fluid. From these equations the shallow water wave equations are constructed under the following

set of assumptions: that the waves are very long, there is no vertical acceleration, and the pressure

distribution is hydrostatic. From the first assumption one may obtain conditions leading to the

second and third assumptions. Relaxing these assumptions we can obtain the related Boussinesq-

type equations. This class of equations can be used to model a range of flows, but is even more

difficult to solve than the shallow water wave equations.

The shallow water wave equations form a hyperbolic non-linear system. The non-linear

nature of this system renders analytical solutions difficult. The equations will often admit dis-

continuous solutions even when the initial conditions are smooth. These discontinuous solutions

do not satisfy the partial differential equation form of the shallow water wave equations and

so the integral form of the equations must be considered. This form can be used to determine

the Rankine-Hugoniot condition that must hold across shocks. Any solution that satisfies this

condition is a weak solution. Unfortunately the Rankine-Hugoniot condition does not guaran-

tee unique solutions. Physically-admissible weak solutions must also satisfy the Lax entropy

condition.

The non-linear behaviour of the shallow water equations also means that analytical solutions

are restricted to a small set of idealised problems. Most practical problems necessitate the use

of numerical techniques. Finite volume and finite element methods are the two main techniques

used to simulate shallow water flow. Naive methods, which do not consider the properties of

the system being modelled, are generally inadequate and often produce entropy-violating and/or
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extremely diffusive solutions. As a result many schemes used to model the shallow water wave

equations are complex and often involve, the computationally expensive, approximation of Rie-

mann problems at each cell interface.

This thesis presented a central-upwind Godunov-type finite volume method for solving the

shallow water wave equations, based on the work of Kurganov et al. [30]. This scheme in-

volves no Riemann solvers or characteristic decomposition and achieves a high resolution due

to the small amount of numerical dissipation introduced. The local propagation speeds of the

rarefaction fans at each cell interface are used to estimate the size of the fan. The solution in

these discontinuous regions are then averaged and combined with the estimates of the solutions

in the smooth regions to obtain a final approximation. A fractional-step method is used to re-

duce the non-homogeneous equations into a sequence of augmented problems. The solution is

then evolved through time using a second-order Runge-Kutta method. Another advantage of this

method is that it can easily be extended to simulate two-dimensional flows.

The central-upwind scheme presented in this thesis has been implemented in a modularised

object-oriented software package written in Python. This code was developed from scratch, to

facilitate greater understanding and more comprehensive evaluation of the numerical technique

in question. Use of pre-built software may not have identified some of the numerical difficulties

discussed below.

This second-order central-upwind scheme was initially constructed using a first-order for-

ward Euler time-stepping method. It was found, however, that the second-order central-upwind

scheme requires a time discretisation of the corresponding order. When the spatial and temporal

discretisations are inconsistent, spurious oscillations pollute the solution and the amplitude of

these oscillations increases, as the computational grid is refined. The second-order time-stepping

method implemented is less computationally efficient. Nevertheless the increase in accuracy

and the inaccuracies of the first-order temporal discretisation necessitates the increased compu-

tational effort.

A range of limiters have been tested for the second-order central-upwind scheme. The Pyvo-

lution, Superbee and Kurganov minmod limiters produce reasonable reconstructions of subcrit-

ical and supercritical flow from dam-breaks. But they produced extremely poor results when

modelling dam-break over a dry bed. Due to the severity of the inaccuracies, use of these three

limiters must be avoided. The van Leer limiter produced the most accurate results, followed by

the van Albada limiter and the more diffusive minmod limiter. However all three limiters under-

estimated the velocity of the advancing wet of a dry dam-break. Further work is needed to find
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an appropriate method to adjust the limiting procedure at wet and dry interfaces.

The veracity of this model was investigated by comparing the model output against a number

of analytical solutions. The central-upwind scheme is able to accurately resolve shocks and

model steady flow over rapidly-varying topography. The scheme is second-order accurate when

modelling smooth flows and first-order accurate when modelling flow characterised by shocks.

Subcritical flow over a parabolic obstruction produces smooth velocities and free surface

profiles. As the computational grid is refined the numerical approximations of depth converge to

the exact solution at a rate proportional to the square of the grid length. However the numerical

approximation of momentum only converges at a rate proportional to the size of the grid length.

This is caused by the larger errors found at the discontinuities in the derivatives which dominate

the solution and only decrease at a rate proportional to the grid length.

When finite water depth exists throughout the computational domain a dam-break will pro-

duce a shock. In this situation the central-upwind scheme produces numerical solutions that

converge to the exact solution at a rate proportional to the cell length. When a dam-break occurs

over a dry bed, a shock is not produced but the model still only produces first-order accurate so-

lutions. As the grid is refined the interface between the advancing wet front and the dry bed poses

the most difficulties. Again this is related to the inaccuracies of the slope limiting procedure at

the wet/dry interface.

Simulating oscillating planar flow in a parabolic canal proved the most severe test of the

central-upwind scheme. Simulations conserving stage took significantly longer to execute than

simulations conserving depth. The longer execution times are due to the smaller time steps

required by the scheme conserving stage. The stage is reconstructed in a manner that can produce

small values of depth and large values of momentum resulting in large estimates of maximum

wave speeds and consequently small time steps. The difference between execution times of

the two schemes decreases as the computational grid is refined. Both schemes produce similar

errors. The author believes that even more accurate results can be produced by employing a more

plausible representation of the physical mechanisms of the wetting and drying of cells.

An attempt was made to adapt the procedure employed by Begnudelli and Sanders [3] to

model the wetting and drying of two-dimensional shallow water flow on unstructured triangular

grids. However the attempts documented here produced less accurate results. A more accurate

prediction of the velocity in partially wetted cells is needed.

In this thesis we have developed a one-dimensional model for modelling shallow water flow.

Although few real flows are truly one-dimensional, it is hoped we have demonstrated, through the
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simpler 1D representation, many of the various mathematical and computational considerations

central to computational hydraulics.



Appendix A

Simulating a Subcritical Dam-Break

The code developed to implement the central-upwind scheme presented in this thesis is too

large to be included here in its entirety. The following presentation aims to provide insight into

the process required to initialise and execute a scenario. Here we use the concrete example of

the subcritical dam-break described in §3.3.1.

To set up a particular scenario the user specifies the geometry (bathymetry and topography),

the initial water level, boundary conditions such as tide, and any forcing terms that may drive the

system such as pressure gradients and friction. Here we construct the computation grid using the

following commands

L = 2000.0 # Length of channel (m)

N = 100 # Number of computational cells

cell len = L/N # Origin = 0.0

points = zeros(N+1,Float)

for i in range(N+1):

points[i] = i*cell len

domain = Domain(points)

When the model is run, the mesh is converted into a domain object that represents the study area,

quantities, boundaries and forcing terms. The domain object also contains methods for time

stepping, flux calculations, and all other numerical operations pertinent to the model.

I



APPENDIX A. SIMULATING A SUBCRITICAL DAM-BREAK II

The conserved quantities updated by the numerical scheme are stage w, through the conserved

quantity h, and horizontal momentum. The initial values of the updated quantities is set using

domain.set quantity(’stage’, stage)

domain.set quantity(’elevation’, elevation)

Here the second argument of the set quantity routine is a function that returns a vector

specifying the values of the quantity of interest at each of the points in domain. In the case of

the dam-break the function used to set the stage is

def stage(x):

y = zeros(len(x),Float)

for i in range(len(x)):

if x[i]<=1000.0:

y[i] = h1

else:

[i] = h0

return y

A similar function is used to set the bathymetry elevation. Boundary conditions are bound to

symbolic tags using

domain.set boundary({’exterior’: Reflective boundary(domain)})

This routine uses a lookup table implemented as a Python dictionary as input. The boundary

objects are all assumed to be callable functions of the coordinate vector x. The software built

implements two standard boundary types – Dirichlet and Reflective boundaries.

Once the physical properties of the domain have been set the following set of commands must

be used to specify the order of the spatial and temporal discretisation, the Cr number controlling

the time step size, the slope limiter to be used, and if necessary β required by some limiters such

as the Kurganov Minmod limiter

domain.default order = 1

domain.default time order = 1

domain.cfl = 1.0

domain.beta = 1.0

domain.limiter = "minmod"
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The simulation is run using

yieldstep = 1.0

finaltime = 20.0

for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime):

<update solution>

The parameter finaltime specifies the time period over which evolve operates. Control

is passed to the body of the for-loop at each fixed yieldstep. This decouples the internal time

stepping from the overall time-stepping so that outputs may be interrogated.

The nature of <update solution> depends on the temporal and spatial discretisation.

If a first-order spatial and temporal discretisation is used the following process is executed at

each time step.

domain.compute fluxes()

domain.update timestep(yieldstep, finaltime)

domain.compute forcing terms()

domain.update conserved quantities(self.timestep)

domain.distribute to vertices and edges()

domain.update boundary()

If a second-order spatial and temporal discretisation is used then the following process is used.

domain.compute timestep()

domain.solve inhomogenous second order(yieldstep, finaltime)

domain.solve homogenous second order(yieldstep,finaltime)

domain.solve inhomogenous second order(yieldstep, finaltime)
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