
Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Parallelisation of ANUGA

Stephen Roberts1

1Department of Mathematics
The Australian National University

September 15, 2008

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Development Team

GA: Ole Nielsen

ANU: Stephen Roberts, Linda Stals, Jack Kelly

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Update Step

def e v o l v e o n e e u l e r s t e p (s e l f , y i e l d s t e p , f i n a l t i m e) :
”””
One Eu l e r Time Step
Qˆ{n+1} = E(h) Qˆn
”””

Compute f l u x e s a c r o s s each e l ement edge
s e l f . c ompu t e f l u x e s ()

Update t ime s t ep to f i t y i e l d s t e p and f i n a l t i m e
s e l f . u pda t e t ime s t e p (y i e l d s t e p , f i n a l t i m e)

Update con s e r v ed q u a n t i t i e s
s e l f . u p d a t e c o n s e r v e d q u a n t i t i e s ()

Update gho s t s
s e l f . u pda t e gho s t s ()

Update t ime
s e l f . t ime += s e l f . t ime s t ep

Update v e r t e x and edge v a l u e s
s e l f . d i s t r i b u t e t o v e r t i c e s a n d e d g e s ()

Update boundary v a l u e s
s e l f . update boundary ()

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Parallelisation of the Algorithm

1 partition the mesh into a set of non-overlapping submeshes
2 build a ‘ghost’ or communication layer of triangles around

each submesh and define the communication pattern
3 distribute the submeshes over the processors,
4 and update the numbering scheme for each submesh assigned

to a processor.

Build Local
Mesh

..

.

.

Build Local
Mesh

..

.

.
Build Commun.

Processor 0

Layer

Processor 0

Processor 0

Send

Processor p

Subdivide
Mesh Submesh

The main steps used to divide the mesh over the processors.
Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Ghost Triangles

0
1

2

3

4
5

6

0
1

2

4

3

6

5

Submesh 0 Submesh 1

An example subpartitioning of a mesh.

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Ghost Triangles

During the evolve calculations Triangle 2 in Submesh 0 will
need to access its neighbour Triangle 3 stored in Submesh 1.

The standard approach to this problem is to add an extra
layer of triangles, which we call ghost triangles.

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Ghost Triangles

Submesh 1

0
1

2

3

4
5

6

Submesh 0

1 2
3

4

20

(5) (2)

(0)
(1) (2)

(4)

(3) 5

(3)

4

(4)

6

(1)
5

(0)
3

An example subpartitioning with ghost triangles. The numbers in
brackets shows the local numbering scheme that is calculated and
stored with the mesh.

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Ghost Triangles

The ghost triangles are read-only

They are only there to hold any extra information that a
processor may need to complete its calculations.

The ghost triangle values are updated through communication
calls.

After each evolve step Processor 0 will have to send the
updated values for Triangle 2 and Triangle 4 to Processor 1,
and similarly Processor 1 will have to send the updated values
for Triangle 3 and Triangle 5

This happens in the self .update ghosts() of the evolve step

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Mesh Partitioning

We use Metis partitioning library.

Hierarchical partitioner

glaros.dtc.umn.edu/gkhome/metis/metis/overview

See George Karypis and Vipin Kumar.
A fast and high quality multilevel scheme for partitioning
irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–392, 1999.
http://glaros.dtc.umn.edu/gkhome/fetch/papers/
mlSIAMSC99.pdf

Roberts, Stephen Parallelisation of ANUGA

glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/fetch/papers/mlSIAMSC99.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/papers/mlSIAMSC99.pdf

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Mesh Partitioning: Example

The Merimbula mesh.

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Mesh Partitioning: Example

The Merimbula grid partitioned over 4 processors using Metis.

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Mesh Partitioning: Example

CPU 0 1 2 3
Elements 2757 2713 2761 2554

% 25.6% 25.2% 25.6% 23.7%

4-way test of Meribula Mesh

CPU 0 1 2 3 4 5 6 7
Elements 1229 1293 1352 1341 1349 1401 1413 1407

% 11.4% 12.0% 12.5% 12.4% 12.5% 13.0% 13.1% 13.0%

8-way test of Meribula Mesh

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Performance Analysis

Ran on a cluster of four nodes connected with PathScale
InfiniPath HTX.

Each node has two AMD Opteron 275 (Dual-core 2.2 GHz
Processors) and 4 GB of main memory.

The system achieves 60 Gigaflops with the Linpack
benchmark, which is about 85% of peak performance.

For each test run we evaluate the parallel efficiency as

En =
T1

nTn
100,

where Tn = max0≤i<n{ti}, n is the total number of processors
(submesh) and ti is the time required to run the evolve code
on processor i .

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Performance Analysis: Advection Rectangular

n Tn (sec) En(%)

1 36.61
2 18.76 98
4 10.16 90
8 6.39 72

n Tn (sec) En(%)

1 282.18
2 143.14 99
4 75.06 94
8 41.67 85

n Tn (sec) En(%)

1 2200.35
2 1126.35 97
4 569.49 97
8 304.43 90

Parallel Efficiency Results for the Advection Problem on a
Rectangular Domain with (1) N = 40, M = 40, (2) N = 80, M = 80
and (3) N = 160, M = 160.

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Performance Analysis: Advection Rectangular

The examples where n ≤ 4 were run on one Opteron node
containing 4 processors, the n = 8 example was run on 2
nodes (giving a total of 8 processors).

The communication within a node is faster than the
communication across nodes, so we would expect to see a
decrease in efficiency when we jump from 4 to 8 nodes.

Furthermore, as N and M are increased the ratio of exterior to
interior triangles decreases, which in-turn decreases the
amount of communication relative the amount of computation
and thus the efficiency should increase.

The efficiency results shown here are competitive.

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Performance Analysis: Merimbula

n Tn (sec) En(%)

1 145.17
2 77.52 94
4 41.24 88
8 22.96 79

n Tn (sec) En(%)

1 7.04
2 3.62 97
4 1.94 91
8 1.15 77

Parallel Efficiency Results for (1) the Advection Problem and (2)
the Shallow Water Problem on the Merimbula Mesh.

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Performance Analysis

The efficiency results are not as good as initially expected

The profiled code indicated that the problem is with the
update boundary routine.

On one processor the update boundary routine accounts for
about 72% of the total computation time.

When metis subpartitions the mesh it is possible that one
processor will only get a few boundary edges (some may not
get any) while another processor may contain a relatively large
number of boundary edges.

The profiler indicated that when running the problem on 8
processors, Processor 0 spent about 3.8 times more doing the
update boundary calculations than Processor 7.

This load imbalance reduced the parallel efficiency.

Roberts, Stephen Parallelisation of ANUGA

Evolve Timestep
Parallelisation of the Algorithm

Mesh Partitioning
Performance Analysis

Example Code

Code

#−−
Setup computa t i ona l domain
#−−
po i n t s , v e r t i c e s , boundary = r e c t a n g u l a r c r o s s (10 , 10) # Bas i c mesh
domain = Domain (po i n t s , v e r t i c e s , boundary) # Create domain

#−−
Setup i n i t i a l c o n d i t i o n s
#−−
domain . s e t q u a n t i t y (’ e l e v a t i o n ’ , topography) # Use f u n c t i o n f o r e l e v a t i o n
domain . s e t q u a n t i t y (’ s t a g e ’ , e x p r e s s i o n=’ e l e v a t i o n ’) # Dry i n i t i a l s t a g e

#−−
Create the p a r a l l e l domain
#−−
domain = d i s t r i b u t e (domain , v e r bo s e=True)

#−−
Setup boundary c o n d i t i o n s
This must c u r r e n t l y happen ∗ a f t e r∗ domain has been d i s t r i b u t e d
#−−
Br = Re f l e c t i v e b o u n d a r y (domain) # So l i d r e f l e c t i v e wa l l
Bd = D i r i c h l e t b o u n d a r y ([− 0 . 2 , 0 . , 0 .]) # Constant boundary v a l u e s

domain . s e t bounda r y ({ ’ l e f t ’ : Br , ’ r i g h t ’ : Bd , ’ top ’ : Br , ’ bottom ’ : Br})

Roberts, Stephen Parallelisation of ANUGA

	Evolve Timestep
	Parallelisation of the Algorithm
	Mesh Partitioning
	Performance Analysis
	Example Code

