
Domain partitioning, Parallel performance and Visualisation in

the ANUGA Hydrodynamic Software

Jack Kelly

April 6, 2006

1 Project Description

During my scholarship, my efforts were directed into three areas: improving the partitioning
scheme for the domain, examination of the parallel version of the ANUGA software and
improving the realtime visualisation component of the system.

2 Partitioning

2.1 Overview

The original partitioning scheme for distributing the domain used a simple co-ordinate based
dissection. This method has been replaced by pymetis, a python wrapper around the METIS
(http://www-users.cs.umn.edu/∼karypis/metis/) partitioning library. Pymetis is cur-
rently incomplete and at the time of writing, only provided the partMeshNodal function. A
new pmesh divide function, pmesh divide metis, uses metis to divide the domain for parallel
computation.

METIS was chosen as the partitioner based on the results in the paper: “A fast and high
quality multilevel scheme for partitioning irregular graphs”. (http://www-users.cs.umn.
edu/∼karypis/publications/Papers/PDF/mlevel\ serial.pdf)

2.2 Compilation

Building the Pymetis wrapper is done using Make, but there is variation depening on the
host system type. Under most types of Linux, simply running make will work. Under x86 64
versions of Linux, the command is make COPTIONS="-fPIC". Finally, under windows, the
command is make for_win32. For a sanity check, a simple PyUnit test is provided, called
test metis.py .

2.3 Test

Running an 8-way test of ga/inundation/parallel/run parallel sw merimbula metis.py dis-
plays the following results for load distribution:

1



CPU 0 1 2 3 4 5 6 7
Elements 1292 1647 1505 1623 1381 1514 1605 1388

% 10.81% 13.78% 12.59% 13.58% 11.55% 12.66% 13.43% 11.61%
Total Elements: 11955, Total %: 100.01%

Which suggest that Pymetis is performing as expected.

3 Performance Analysis

Examination of the parallel performance of the ANUGA system has been done using the
APAC’s Linux Cluster (LC). Running MPI jobs with python through the batch system re-
quires specific settings as follows:

1. Comment out all module load statements from .bashrc .cshrc .profile and .login

2. In the script for submission through PBS, add the lines:

module load python
module load lam

3. (Bash specific; translate if using csh) add export LD ASSUME KERNEL=2.4.1 and
export PYTHONPATH=(relevant directory)

4. Instead of the call to lrun, use:

lamboot
mpirun -np <number of processors> -x LD_LIBRARY_PATH,PYTHONPATH
,LD_ASSUME_KERNEL <python filename>
lamhalt

The line beginning with ‘mpirun’ and ending with ‘<python filename>’ should be on
a single line.

5. Ensure the you have -l other=mpi in the PBS directives.

6. Ensure that pypar 1.9.2 is accessible. At the time of writing, it was in the SVN reposi-
tory under the directory ga/inundation/pypar dist . Move it to the directory pypar, so
that this pypar directory is accessible from the PYTHONPATH.

The section of code that was profiled was the evolve function, which handles progression of
the simulation in time.

The functions that have been examined were the ones that took the largest amount of
time to execute. Efficiency values were calculated as follows:

E =
T1

n× Tn,1
× 100%

2



Where T1 is the time for the single processor case, n is the number of processors and Tn,1 is
the first processor of the n cpu run. Results were generated using an 8 processor test run, com-
pared against the 1 processor test run. The test script used was run parallel sw merimbula metis.py
script in svn/ga/inundation/parallel.

Function name Parallel efficiency
evolve(shallow water.py) 79%
update boundary(domain.py) 52%
distribute to vertices and edges(shallow water.py) 140.6%
evaluate(shallow water.py) 57.8%
compute fluxes(shallow water.py) 192.2%

While evolve was the main function of interest in the profiling efforts, the other functions
listed above displayed parallel efficiencies that warranted further attantion.

3.1 update boundary

Whenever the domain is split for distribution, an additional layer of triangles is added along
the divide. These ‘ghost’ triangles hold read only data from another processor’s section of
the domain. The use of a ghost layer is common practise and is designed to reduce the
communication frequency. Some edges of these ghost triangles will contain boundary objects
which get updated during the call to update boundary. These are redundant calculations
as information from the update will be overwritten during the next communication call.
Increasing the number of processors increases the ratio of such ghost triangles and the amount
of time wasted updating the boundaries of the ghost triangles. The low parallel efficiency of
this function has resulted in efforts towards optimisation, by tagging ghost nodes so they are
never updated by update boundary calls.

3.2 distribute to vertices and edges

Initially, the unusual speedup was thought to be a load balance issue, but examination of the
domain decomposition demonstrated that this was not the case. All processors were showing
this unusual speedup. The profiler was then suspected, due to the fact that C code cannot
be properly profiled by the python profiler. The speedup was confirmed by timing using the
hotshot profiler and calls to time.time().

The main function called by distribute to vertices and edges is balance deep and shallow c
and was profiled in the same way, showing the same speedup.

The call to balance deep and shallow c was replaced by a call to the equivalent python
function, and timed using calls to time.time(). The total CPU time elapsed increased slightly
as processors increased, which is expected. The algorithm part of the C version of bal-
ance deep and shallow was then timed using calls to gettimeofday(), with the following re-
sults:

Number of processors Total CPU time
1 0.482695999788
2 0.409433000023
4 0.4197840002601
8 0.4275599997492

3



For two processors and above, the arrays used by balance deep and shallow fit into the L2
cache of an LC compute node. The cache effect is therefore responsible for the speed increase
from one to two processors.

3.2.1 h limiter

h limiter is a function called by balance deep and shallow. Timing the internals of the C
version of balance deep and shallow results in the call to h limiter not being correctly timed.
Timing h limiter from the python side resulted in unusual (>100%) parallel efficiency, and
timing the algorithm part of the C version of h limiter (i.e. not boilerplate code required for
the Python-C interface such as calls to PyArg ParseTuple) displayed expected slowdowns.
Therefore, it is presumed that this unusual speedup is due to how python passes information
to C functions.

3.3 evaluate

Evaluate is an overridable method for different boundary classes (transmissive, reflective,
etc). It contains relatively simple code, which has limited scope for optimisation. The low
parallel efficiency of evaluate is due to it being called from update boundary and the number
of boundary objects is increasing as the number of CPUs increases. Therefore, the parallel
efficiency here should be improved when update boundary is corrected.

3.4 compute fluxes

Like balance deep and shallow and h limiter, compute fluxes calls a C function. Therefore,
the unusual parallel efficiency has the same cause as balance deep and shallow and h limiter
- presumed to be the way python calls code in C extensions.

3.5 Conclusions

The unusual speedup exhibited by compute fluxes, balance deep and shallow and h limiter
has been traced to how the Python runtime passes information to C routines. In future work
we plan to investigate this further to verify our conclusions.

4 Visualisation

The real-time visualisation component of the ANUGA system originally used VPython (http:
//www.vpython.org). This implementation is being superceded by a VTK-based (http:
//www.vtk.org/) visualiser which is faster, capable of handling larger data sets and more
configurable. At the time of writing, the Domain class that uses the VTK visualiser resides
in ga/inundation/pyvolution/shallow water vtk.py. It has been tested to work under Linux
and Windows.

The visualiser class itself resides in ga/inundation/pyvolution/vtk realtime visualiser.py.
Customisation options for the visualiser are members of the visualiser class and their

functions are as follows:

• setup: Dictionary mapping quantity name → boolean. if setup[q] is true, draw the
quantity when the visualiser starts.

4



• updating: Dictionary mapping quantity name → boolean. if updating[q] is true, update
the rendering of this quantity each timestep.

• qcolor: Dictionary mapping quantity name → (float, float, float). If the name of a
quantity is found in qcolor, the colour specified (in (r, g, b) from 0.0 to 1.0) is used for
display of that quantity instead of (0.5, 0.5, 0.5) (the default)

• scale z: Dictionary mapping quantity name → float. Override the z scaling of this
quantity with the float specified.

• default scale z: float. Multiply all z coordinates by this amount unless an overriding
value exists in scale z.

Screenshot:

Unlike the old VPython visualiser, the behaviour of the VTK interaction classes com-
pletely tie up the thread that they are running in. The solution was to use the TK interactor,
and build a TKinter gui around the render window.

Even using TK around the VTK interactor, this still ties up the thread for TK’s main
loop. This was worked around by making the visualiser use its own thread for rendering. This
worked fine under Linux, but under Windows the visualiser is ‘starved’ by the CPU-bound
thread that contains the call to evolve(). To rectify this, the visualiser and the main thread
are explicitly synchronised: The visualiser waits on a condition variable to signify that the

5



evolve thread has finished computation for its yieldstep. The visualiser then updates the
VTK data structures, while the evolving thread waits on another condition variable for the
visualiser to finish. The visualiser then informs the evolve thread that it is finished and
returns to waiting. While this does reduce the potential for concurrency, it still maintains an
acceptable level of interactivity.

Currently, the rendering method is only suitable for quantities for which the concept of
height makes sense (e.g. stage and elevation in the Shallow Water domain). Adding support
for alternate rendering methods would be a welcome enhancement to this visualiser.

6


