source: anuga_work/development/Hinwood_2008/run_dam.py @ 5562

Last change on this file since 5562 was 5503, checked in by duncan, 16 years ago

Current Hinwood scenario - added plotting of froude number, stage slope and time vs location for each wave

File size: 9.7 KB
Line 
1"""
2
3Script for running a breaking wave simulation of Jon Hinwoods wave tank.
4Note: this is based on the frinction_ua_flume_2006 structure.
5
6
7Duncan Gray, GA - 2007
8
9
10
11"""
12
13
14#----------------------------------------------------------------------------
15# Import necessary modules
16#----------------------------------------------------------------------------
17
18# Standard modules
19import time
20from time import localtime, strftime
21import sys
22from shutil import copy
23from os import path, sep
24from os.path import dirname, join  #, basename
25from Numeric import zeros, size, Float
26
27# Related major packages
28from anuga.shallow_water import Domain, Reflective_boundary, \
29                            Dirichlet_boundary,  Time_boundary, \
30                            File_boundary, \
31                            Transmissive_Momentum_Set_Stage_boundary
32from anuga.fit_interpolate.interpolate import interpolate_sww2csv
33from anuga.abstract_2d_finite_volumes.util import start_screen_catcher, \
34      file_function
35from anuga.shallow_water.data_manager import copy_code_files
36from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\
37     import File_boundary_time
38
39# Scenario specific imports
40import project                 # Definition of file names and polygons
41import create_mesh
42from prepare_time_boundary import prepare_time_boundary
43from interp import interp
44
45
46class Elevation_function:
47    def __init__(self, slope):
48        self.xslope_position = [slope['xleft'][0],slope['xtoe'][0],
49                  slope['xbeach'][0],slope['xright'][0]]
50        self.yslope_height = [slope['xleft'][1],slope['xtoe'][1],
51                  slope['xbeach'][1],slope['xright'][1]]
52       
53    def __call__(self, x,y):
54       
55        z = interp(self.yslope_height, self.xslope_position, x)
56        return z
57
58def main(boundary_file,
59         metadata_dic,
60         boundary_path=None,
61         friction=0.012,  # planed wood. http://www.lmnoeng.com/manningn.htm
62         outputdir_name=None,
63         run_type=0,
64         end_tag = '_limiterD'):
65
66   
67    basename = 'zz_' + metadata_dic['scenario_id']
68   
69    if run_type == 1:
70        outputdir_name += '_test' + end_tag
71        yieldstep = 1.0
72        finaltime = 15.
73        maximum_triangle_area=0.1
74       
75    elif run_type == 2:
76        outputdir_name += '_test_long_time' + end_tag
77        yieldstep = 0.5
78        finaltime = None
79        maximum_triangle_area=0.01
80       
81    elif run_type == 3:
82        outputdir_name += '_yieldstep_0.1_tri_area_0.01' + end_tag
83        yieldstep = 0.1
84        finaltime = None       
85        maximum_triangle_area=0.01
86    elif run_type == 4:
87        outputdir_name += '_good_tri_area_0.01' + end_tag
88        # this is not a test
89        # Output will go to a file
90        # The sww file will be interpolated
91        yieldstep = 0.01
92        finaltime = None       
93        maximum_triangle_area=0.01
94    elif run_type == 5:
95        outputdir_name += '_good_tri_area_0.001' + end_tag
96        # this is not a test
97        # Output will go to a file
98        # The sww file will be interpolated
99        yieldstep = 0.01
100        finaltime = None       
101        maximum_triangle_area=0.001
102     
103    metadata_dic = set_z_origin_to_water_depth(metadata_dic)   
104       
105    pro_instance = project.Project(['data','flumes','Hinwood_2008'],
106                                   outputdir_name=outputdir_name)
107    print "The output dir is", pro_instance.outputdir
108    copy_code_files(pro_instance.outputdir,__file__,
109                    dirname(project.__file__) \
110                    + sep + project.__name__+'.py')
111    copy (pro_instance.codedir + 'run_dam.py',
112          pro_instance.outputdir + 'run_dam.py')
113    copy (pro_instance.codedir + 'create_mesh.py',
114          pro_instance.outputdir + 'create_mesh.py')
115
116    boundary_final_time = prepare_time_boundary(metadata_dic,
117                                       pro_instance.raw_data_dir,
118                                       pro_instance.boundarydir)
119    #return pro_instance
120    if finaltime is None:
121        finaltime = boundary_final_time - 0.1 # Edge boundary problems
122    # Boundary file manipulation
123    if boundary_path is None:
124        boundary_path = pro_instance.boundarydir
125    boundary_file_path = join(boundary_path, boundary_file)
126   #  # Convert the boundary file, .csv to .tsm
127#     try:
128#         temp = open(boundary_file_path)
129#         temp.close()
130#     except IOError:
131#         prepare_time_boundary(boundary_file_path)
132   
133    mesh_filename = pro_instance.meshdir + basename + '.msh'
134
135    #--------------------------------------------------------------------------
136    # Copy scripts to output directory and capture screen
137    # output to file
138    #--------------------------------------------------------------------------
139
140    # creates copy of code in output dir
141    if run_type >= 2:
142        #start_screen_catcher(pro_instance.outputdir, rank, pypar.size())
143        start_screen_catcher(pro_instance.outputdir)
144
145    print 'USER:    ', pro_instance.user
146    #-------------------------------------------------------------------------
147    # Create the triangular mesh
148    #-------------------------------------------------------------------------
149
150    # this creates the mesh
151    #gate_position = 12.0
152    create_mesh.generate(mesh_filename, metadata_dic,
153                         maximum_triangle_area=maximum_triangle_area)
154
155    head,tail = path.split(mesh_filename)
156    copy (mesh_filename,
157          pro_instance.outputdir + tail )
158    #-------------------------------------------------------------------------
159    # Setup computational domain
160    #-------------------------------------------------------------------------
161    domain = Domain(mesh_filename, use_cache = False, verbose = True)
162   
163
164    print 'Number of triangles = ', len(domain)
165    print 'The extent is ', domain.get_extent()
166    print domain.statistics()
167
168   
169    domain.set_name(basename)
170    domain.set_datadir(pro_instance.outputdir)
171    domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum'])
172    domain.set_minimum_storable_height(0.0001)
173
174    domain.set_default_order(2) # Use second order spatial scheme
175    domain.set_timestepping_method('rk2')
176    domain.use_edge_limiter = True
177    domain.tight_slope_limiters = True
178   
179    domain.beta_w      = 0.6
180    domain.beta_uh     = 0.6
181    domain.beta_vh     = 0.6
182   
183
184    #-------------------------------------------------------------------------
185    # Setup initial conditions
186    #-------------------------------------------------------------------------
187
188    domain.set_quantity('stage', 0.) #the origin is the still water level
189    domain.set_quantity('friction', friction)
190    elevation_function = Elevation_function(metadata_dic)
191    domain.set_quantity('elevation', elevation_function)
192
193   
194    print 'Available boundary tags', domain.get_boundary_tags()
195
196    # Create boundary function from timeseries provided in file
197    #function = file_function(project.boundary_file, domain, verbose=True)
198    #Bts = Transmissive_Momentum_Set_Stage_boundary(domain, function)
199    try:
200        function = file_function(boundary_file_path, domain,
201                                 verbose=True)
202    except IOError:
203        msg = 'Run prepare_time_boundary.py. File "%s" could not be opened.'\
204                  %(pro_instance.boundary_file)
205        raise msg
206       
207    Br = Reflective_boundary(domain)
208    Bd = Dirichlet_boundary([0.3,0,0]) 
209    Bts = Time_boundary(domain, function)
210    domain.set_boundary( {'wall': Br, 'wave': Bts} )
211    #domain.set_boundary( {'wall': Br, 'wave': Bd} )
212
213    #-------------------------------------------------------------------------
214    # Evolve system through time
215    #-------------------------------------------------------------------------
216    t0 = time.time()
217
218    # It seems that ANUGA can't handle a starttime that is >0.
219    #domain.starttime = 1.0 #!!! what was this doing?
220    for t in domain.evolve(yieldstep, finaltime):   
221        domain.write_time()
222    print 'That took %.2f seconds' %(time.time()-t0)
223    print 'finished'
224
225    flume_y_middle = 0.5
226    points = []
227    for gauge_x in metadata_dic['gauge_x']:
228        points.append([gauge_x, flume_y_middle])
229    print "points",points
230
231
232    #-------------------------------------------------------------------------
233    # Calculate gauge info
234    #-------------------------------------------------------------------------
235
236    if run_type >= 1:
237        id = metadata_dic['scenario_id'] + ".csv"
238        interpolate_sww2csv(pro_instance.outputdir + basename +".sww",
239                            points,
240                            pro_instance.outputdir + "depth_" + id,
241                            pro_instance.outputdir + "velocity_x_" + id,
242                            pro_instance.outputdir + "velocity_y_" + id,
243                            pro_instance.outputdir + "stage_" + id,
244                            pro_instance.outputdir + "froude_" + id)
245 
246    return pro_instance
247
248def set_z_origin_to_water_depth(seabed_coords):
249    offset = seabed_coords['offshore_water_depth']
250    keys = ['xleft', 'xtoe', 'xbeach', 'xright']
251    for x in keys:
252            seabed_coords[x][1] -= offset
253    return seabed_coords
254#-------------------------------------------------------------
255if __name__ == "__main__":
256   
257    from scenarios import scenarios
258    from slope import gauges_for_slope
259    #from plot import plot
260
261
262    # 4 is 0.01
263    # 5 is 0.001
264    run_type = 5
265    #for run_data in [scenarios[5]]:
266    #scenarios = scenarios[2:]
267    #scenarios = [scenarios[0]]
268    for run_data in scenarios:
269        pro_instance = main( run_data['scenario_id'] + '_boundary.tsm'  ,
270                             run_data,
271                             run_type = run_type,
272                             outputdir_name=run_data['scenario_id'],
273                             end_tag='_limiterD')
274        #gauges_for_slope(pro_instance.outputdir,[run_data])
Note: See TracBrowser for help on using the repository browser.