source: documentation/experimentation/smf.tex @ 2978

Last change on this file since 2978 was 2923, checked in by sexton, 19 years ago

updates to smf doc

File size: 7.8 KB
RevLine 
[2681]1\documentclass[reqno]{article}
[2844]2%\documentstyle{letter}
[2681]3\usepackage{ae} % or {zefonts}
4\usepackage[T1]{fontenc}
5\usepackage[ansinew]{inputenc}
6\usepackage{amsmath}
7\usepackage{amssymb}
8\usepackage{graphicx}
9\usepackage{color}
10\usepackage[colorlinks]{hyperref}
[2843]11\usepackage{setspace}
[2681]12% \Add{} and \Del{} Corrections and \Mark{}
13%\usepackage[active,new,noold,marker]{xrcs}
14\usepackage{eurosym}
15\DeclareInputText{128}{\euro} % ANSI code for euro: € \usepackage{eurosym}
16\DeclareInputText{165}{\yen}  % ANSI code for yen:  ¥ \usepackage{amssymb}
17
18\usepackage{lscape} %landcape pages support
[2687]19%\input{definitions}
[2801]20\topmargin 0pt
21\oddsidemargin 10pt
22\evensidemargin 10pt
23\marginparwidth 0.5pt
24\textwidth \paperwidth 
25\advance\textwidth -2.5in
[2843]26\setstretch{1.5}
[2844]27\parindent 0pt
28\parskip 2pt
[2681]29
[2801]30%\title{Application of SMF surface elevation function in inundation modelling}
[2681]31\date{}
32
33\begin{document}
34
[2801]35%\maketitle
[2681]36
[2844]37May 2006
[2681]38
[2844]39Dr Phil Watts
[2801]40
[2844]41Applied Fluids Engineering
[2801]42
[2844]43Long Beach California
[2801]44
[2844]45USA
[2801]46
[2844]47phil.watts@appliedfluids.com
[2801]48
[2844]49Dear Phil,
50\parindent 15pt
[2801]51
52{\bf Ref: Application of sediment mass failure surface elevation function
53in inundation modelling}
54
[2871]55We work at Geoscience Australia (GA) in the Risk Research Group
56researching risks posed by a range of natural hazards
57(http://www.ga.gov.au/urban/projects/risk/index.jsp).
58Due to recent
[2874]59events and Australia's apparent vulnerabiliy to tsunami hazards,
60we are investigating the tsunami risk to Australia. To understand
[2871]61impact ashore, we have developed in conjunction
62with the Australian National University, a hydrodynamic model called
63ANUGA which uses the finite volume technique, [1].
[2681]64
[2801]65A recent tsunami inundation study called for the tsunami source to
66be a slump and as such, we implemented the surface elevation
[2874]67function as described in Watts et al 2005, [2]. We found this a very useful
[2871]68way to incorporate another tsunami-genic event to our understanding
69of tsunami risk. In trying
[2874]70to implement this function however, we had some questions;
[2801]71
[2874]72\begin{itemize}
73\item
74Is there a physical explanation to why the total volume
[2801]75of the surface elevation function should not be zero?
[2874]76\item
77Should $\eta_{\rm min}$ used in the surface elevation function
78be | ${\eta_{\rm min}}$ | instead?
79\item
80Is the substitution of $x_g$ into the elevation
81function realistic?
82\end{itemize}
[2801]83
84Investigating the long term behaviour of the
85system, we found that water was being lost from the system when
[2681]86the slump was added to the system. Further investigation showed that
87the depressed volume was greater than the volume displaced above the
[2871]88water surface with approximately 2-3 \% loss. You can see from
[2874]89Figure 2 of [2] that the
[2871]90surface elevation function $\eta(x,y)$ indicates that
91the total volume is not conserved.
[2681]92
[2874]93However, we can alleviate this issue by finding the appropriate set of
94parameters which
95will conserve volume. Setting the integral of the elevation function to zero
96and solving for $\kappa'$ yields the result,
[2801]97$$\kappa' = [
98{\rm erf} ( \frac{x - x_0 } {\sqrt \lambda_0 } ) / 
99{\rm erf} ( \frac{x - \Delta x - x_0}{\sqrt \lambda_0 }) 
100]_{x_{\rm min}}^{x_{\rm max}} \ .$$
[2681]101
[2871]102\noindent The relationship between $\kappa'$ and $\Delta x$ is shown in
103Figure \ref{fig:vol_cons}. It must be noted, that whilst
[2801]104$\kappa'$ is technically less than 1 for $\Delta x < 5.93$ it is
[2871]105effectively equal to 1 for those values. From this calculation, it would
[2876]106seem then that there is no appropriate $\Delta x$ for $\kappa'$ = 0.83
107(a parameter used in [2]) satisfying conservation of volume.
[2681]108
[2874]109We've reproduced Figure 2 in [2]
[2871]110for appropriate values of $\kappa'$ and $\Delta x$ to
[2801]111ensure volume conservation within the system. Using the above
[2874]112formulation, the values of interest shown in Figure 2 in [2] would
[2687]113be ($\kappa', \Delta x) = (1,2), (1,4), (1.2, 13.48)$ and shown in
[2869]114Figure \ref{fig:eta_vary}. Note, this has not been scaled by $\eta_{\rm min}$.
[2681]115
116
[2844]117\begin{figure}
[2687]118
[2874]119  \centerline{ \includegraphics[width=75mm, height=50mm]{volume_conservation.png}}
[2687]120
121  \caption{Relationship between $\kappa'$ and $\Delta x$ to ensure volume conservation.}
122  \label{fig:vol_cons}
123\end{figure}
124
125\begin{figure}[hbt]
126
[2874]127  \centerline{ \includegraphics[width=75mm, height=50mm]{redo_figure.png}}
[2687]128
129  \caption{Surface elevation functions for
130($\kappa', \Delta x) = (1,2), (1,4), (1.2, 13.48)$.}
131  \label{fig:eta_vary}
132\end{figure}
133
[2871]134For our particular test case, changing the surface elevation function
135in this way increases the inundation depth ashore by a factor greater than
[2874]136the initial water loss of 2-3 \%.
[2687]137
[2874]138Turning to our question regarding the scaling of the surface elevation
139function formulation, we see that $\eta_{\rm min}$ is always negative
140and hence
141$- \eta_{O,3D} / \eta_{\rm min}$ would be always positive. This
142would change the form of $\eta(x,y)$ and place the depressed volume behind
143the submarine mass failure. Should then $\eta_{\rm min}$ be replaced
144by |$\eta_{\rm min}$|?
145
[2876]146Our final question is whether it is appropriate to substitute
[2871]147the formulation for $x_g$ into the surface elevation function using
148$x_0 - \Delta x \approx x_g$.
149($x_g$ is formulated
[2876]150as $x_g = d/\tan \theta + T/ \sin \theta$ which is described as a gauge
[2874]151located above the submarine mass failure
[2876]152initial submergence location in [3].) In this
[2871]153way, $\kappa'$ as described above would not
[2874]154be dependent on $\Delta x$, nor the subsequent surface elevation function.
[2681]155
156
[2853]157We are continuing to seek out validation data sets to improve the
[2865]158accuracy of our model. We recently had success in validating
[2874]159the model against the Benchmark Problem $\#$2 Tsunami Run-up
[2853]160onto a complex 3-dimensional beach, as provided to the 3rd
[2871]161International Workshop on Long Wave Run-up in 2004, see [1].
162We note in [4] your proposal for others to employ the benchmark
[2853]163cases described there for experimental or numerical work.
164Your model has been compared with the laboratory experiments in 2003 [5] and
[2874]165again in 2005 [3] with fairly good agreement. Given
[2853]166the numerical model you implemented was the boundary element method, we would
167be very interested in comparing our finite volume model using the
168approximated surface elevation function with your
[2865]169experimental results. Would it therefore be possible for you to provide the
[2853]170experimental time series for comparison with ANUGA?
171
[2844]172\parindent 0pt
173
[2874]174Thanks for your time and we look forward to your response.
[2681]175
[2801]176Yours sincerely,
[2681]177
[2801]178Jane Sexton, Ole Nielsen, Adrian Hitchman and Trevor Dhu.
[2681]179
[2801]180Risk Research Group, Geoscience Australia.
[2681]181
[2874]182\newpage
[2844]183{\bf References}
[2801]184
[2871]185[1] Nielsen, O., S. Robers, D. Gray, A. McPherson, and A. Hitchman (2005)
[2801]186Hydrodynamic modelling of coastal inundation, MODSIM 2005 International
187Congress on Modelling and Simulation. Modelling and Simulation Society
[2844]188of Australian and New Zealand, 518-523, \newline URL:
[2923]189http://www.mssanz.org.au/modsim05/papers/nielsen.pdf
[2801]190
[2871]191[2] Watts, P., Grilli, S.T., Tappin, D.R. and Fryer, G.J. (2005),
[2681]192Tsunami generation by submarine mass failure Part II: Predictive
193equations and case studies, Journal of Waterway, Port, Coastal, and
194Ocean Engineering, 131, 298 - 310.
195
[2871]196[3] Grilli, S.T. and Watts, P. (2005), Tsunami generation by
[2681]197submarine mass failure Part I: Modeling, experimental validation,
198and sensitivity analyses, Journal of Waterway, Port, Coastal, and
199Ocean Engineering, 131, 283 - 297.
200
[2871]201[4] Watts, P., Imamura, F. and Grilli, S. (2000)
[2874]202Comparing Model Simulations of Three Benchmark Tsunami Generation,
[2853]203Science of Tsunami Hazards, 18, 2, 107-123.
204
[2871]205[5] Enet, F., Grilli, S.T. and Watts, P. (2003), Laboratory Experiments for
[2874]206Tsunamis Generated by Underwater Landslides:
207Comparison with Numerical Modeling,
[2853]208Proceedings of the Thirteenth (2003) International Offshore and
209Polar Engineering Conference. The International Society of Offshore and
210Polar Engineers.
[2681]211\end{document}
Note: See TracBrowser for help on using the repository browser.