[2681] | 1 | \documentclass[reqno]{article} |
---|
[2844] | 2 | %\documentstyle{letter} |
---|
[2681] | 3 | \usepackage{ae} % or {zefonts} |
---|
| 4 | \usepackage[T1]{fontenc} |
---|
| 5 | \usepackage[ansinew]{inputenc} |
---|
| 6 | \usepackage{amsmath} |
---|
| 7 | \usepackage{amssymb} |
---|
| 8 | \usepackage{graphicx} |
---|
| 9 | \usepackage{color} |
---|
| 10 | \usepackage[colorlinks]{hyperref} |
---|
[2843] | 11 | \usepackage{setspace} |
---|
[2681] | 12 | % \Add{} and \Del{} Corrections and \Mark{} |
---|
| 13 | %\usepackage[active,new,noold,marker]{xrcs} |
---|
| 14 | \usepackage{eurosym} |
---|
| 15 | \DeclareInputText{128}{\euro} % ANSI code for euro: \usepackage{eurosym} |
---|
| 16 | \DeclareInputText{165}{\yen} % ANSI code for yen: ¥ \usepackage{amssymb} |
---|
| 17 | |
---|
| 18 | \usepackage{lscape} %landcape pages support |
---|
[2687] | 19 | %\input{definitions} |
---|
[2801] | 20 | \topmargin 0pt |
---|
| 21 | \oddsidemargin 10pt |
---|
| 22 | \evensidemargin 10pt |
---|
| 23 | \marginparwidth 0.5pt |
---|
| 24 | \textwidth \paperwidth |
---|
| 25 | \advance\textwidth -2.5in |
---|
[2843] | 26 | \setstretch{1.5} |
---|
[2844] | 27 | \parindent 0pt |
---|
| 28 | \parskip 2pt |
---|
[2681] | 29 | |
---|
[2801] | 30 | %\title{Application of SMF surface elevation function in inundation modelling} |
---|
[2681] | 31 | \date{} |
---|
| 32 | |
---|
| 33 | \begin{document} |
---|
| 34 | |
---|
[2801] | 35 | %\maketitle |
---|
[2681] | 36 | |
---|
[2844] | 37 | May 2006 |
---|
[2681] | 38 | |
---|
[2844] | 39 | Dr Phil Watts |
---|
[2801] | 40 | |
---|
[2844] | 41 | Applied Fluids Engineering |
---|
[2801] | 42 | |
---|
[2844] | 43 | Long Beach California |
---|
[2801] | 44 | |
---|
[2844] | 45 | USA |
---|
[2801] | 46 | |
---|
[2844] | 47 | phil.watts@appliedfluids.com |
---|
[2801] | 48 | |
---|
[2844] | 49 | Dear Phil, |
---|
| 50 | \parindent 15pt |
---|
[2801] | 51 | |
---|
| 52 | {\bf Ref: Application of sediment mass failure surface elevation function |
---|
| 53 | in inundation modelling} |
---|
| 54 | |
---|
[2871] | 55 | We work at Geoscience Australia (GA) in the Risk Research Group |
---|
| 56 | researching risks posed by a range of natural hazards |
---|
| 57 | (http://www.ga.gov.au/urban/projects/risk/index.jsp). |
---|
| 58 | Due to recent |
---|
[2874] | 59 | events and Australia's apparent vulnerabiliy to tsunami hazards, |
---|
| 60 | we are investigating the tsunami risk to Australia. To understand |
---|
[2871] | 61 | impact ashore, we have developed in conjunction |
---|
| 62 | with the Australian National University, a hydrodynamic model called |
---|
| 63 | ANUGA which uses the finite volume technique, [1]. |
---|
[2681] | 64 | |
---|
[2801] | 65 | A recent tsunami inundation study called for the tsunami source to |
---|
| 66 | be a slump and as such, we implemented the surface elevation |
---|
[2874] | 67 | function as described in Watts et al 2005, [2]. We found this a very useful |
---|
[2871] | 68 | way to incorporate another tsunami-genic event to our understanding |
---|
| 69 | of tsunami risk. In trying |
---|
[2874] | 70 | to implement this function however, we had some questions; |
---|
[2801] | 71 | |
---|
[2874] | 72 | \begin{itemize} |
---|
| 73 | \item |
---|
| 74 | Is there a physical explanation to why the total volume |
---|
[2801] | 75 | of the surface elevation function should not be zero? |
---|
[2874] | 76 | \item |
---|
| 77 | Should $\eta_{\rm min}$ used in the surface elevation function |
---|
| 78 | be | ${\eta_{\rm min}}$ | instead? |
---|
| 79 | \item |
---|
| 80 | Is the substitution of $x_g$ into the elevation |
---|
| 81 | function realistic? |
---|
| 82 | \end{itemize} |
---|
[2801] | 83 | |
---|
| 84 | Investigating the long term behaviour of the |
---|
| 85 | system, we found that water was being lost from the system when |
---|
[2681] | 86 | the slump was added to the system. Further investigation showed that |
---|
| 87 | the depressed volume was greater than the volume displaced above the |
---|
[2871] | 88 | water surface with approximately 2-3 \% loss. You can see from |
---|
[2874] | 89 | Figure 2 of [2] that the |
---|
[2871] | 90 | surface elevation function $\eta(x,y)$ indicates that |
---|
| 91 | the total volume is not conserved. |
---|
[2681] | 92 | |
---|
[2874] | 93 | However, we can alleviate this issue by finding the appropriate set of |
---|
| 94 | parameters which |
---|
| 95 | will conserve volume. Setting the integral of the elevation function to zero |
---|
| 96 | and solving for $\kappa'$ yields the result, |
---|
[2801] | 97 | $$\kappa' = [ |
---|
| 98 | {\rm erf} ( \frac{x - x_0 } {\sqrt \lambda_0 } ) / |
---|
| 99 | {\rm erf} ( \frac{x - \Delta x - x_0}{\sqrt \lambda_0 }) |
---|
| 100 | ]_{x_{\rm min}}^{x_{\rm max}} \ .$$ |
---|
[2681] | 101 | |
---|
[2871] | 102 | \noindent The relationship between $\kappa'$ and $\Delta x$ is shown in |
---|
| 103 | Figure \ref{fig:vol_cons}. It must be noted, that whilst |
---|
[2801] | 104 | $\kappa'$ is technically less than 1 for $\Delta x < 5.93$ it is |
---|
[2871] | 105 | effectively equal to 1 for those values. From this calculation, it would |
---|
[2876] | 106 | seem then that there is no appropriate $\Delta x$ for $\kappa'$ = 0.83 |
---|
| 107 | (a parameter used in [2]) satisfying conservation of volume. |
---|
[2681] | 108 | |
---|
[2874] | 109 | We've reproduced Figure 2 in [2] |
---|
[2871] | 110 | for appropriate values of $\kappa'$ and $\Delta x$ to |
---|
[2801] | 111 | ensure volume conservation within the system. Using the above |
---|
[2874] | 112 | formulation, the values of interest shown in Figure 2 in [2] would |
---|
[2687] | 113 | be ($\kappa', \Delta x) = (1,2), (1,4), (1.2, 13.48)$ and shown in |
---|
[2869] | 114 | Figure \ref{fig:eta_vary}. Note, this has not been scaled by $\eta_{\rm min}$. |
---|
[2681] | 115 | |
---|
| 116 | |
---|
[2844] | 117 | \begin{figure} |
---|
[2687] | 118 | |
---|
[2874] | 119 | \centerline{ \includegraphics[width=75mm, height=50mm]{volume_conservation.png}} |
---|
[2687] | 120 | |
---|
| 121 | \caption{Relationship between $\kappa'$ and $\Delta x$ to ensure volume conservation.} |
---|
| 122 | \label{fig:vol_cons} |
---|
| 123 | \end{figure} |
---|
| 124 | |
---|
| 125 | \begin{figure}[hbt] |
---|
| 126 | |
---|
[2874] | 127 | \centerline{ \includegraphics[width=75mm, height=50mm]{redo_figure.png}} |
---|
[2687] | 128 | |
---|
| 129 | \caption{Surface elevation functions for |
---|
| 130 | ($\kappa', \Delta x) = (1,2), (1,4), (1.2, 13.48)$.} |
---|
| 131 | \label{fig:eta_vary} |
---|
| 132 | \end{figure} |
---|
| 133 | |
---|
[2871] | 134 | For our particular test case, changing the surface elevation function |
---|
| 135 | in this way increases the inundation depth ashore by a factor greater than |
---|
[2874] | 136 | the initial water loss of 2-3 \%. |
---|
[2687] | 137 | |
---|
[2874] | 138 | Turning to our question regarding the scaling of the surface elevation |
---|
| 139 | function formulation, we see that $\eta_{\rm min}$ is always negative |
---|
| 140 | and hence |
---|
| 141 | $- \eta_{O,3D} / \eta_{\rm min}$ would be always positive. This |
---|
| 142 | would change the form of $\eta(x,y)$ and place the depressed volume behind |
---|
| 143 | the submarine mass failure. Should then $\eta_{\rm min}$ be replaced |
---|
| 144 | by |$\eta_{\rm min}$|? |
---|
| 145 | |
---|
[2876] | 146 | Our final question is whether it is appropriate to substitute |
---|
[2871] | 147 | the formulation for $x_g$ into the surface elevation function using |
---|
| 148 | $x_0 - \Delta x \approx x_g$. |
---|
| 149 | ($x_g$ is formulated |
---|
[2876] | 150 | as $x_g = d/\tan \theta + T/ \sin \theta$ which is described as a gauge |
---|
[2874] | 151 | located above the submarine mass failure |
---|
[2876] | 152 | initial submergence location in [3].) In this |
---|
[2871] | 153 | way, $\kappa'$ as described above would not |
---|
[2874] | 154 | be dependent on $\Delta x$, nor the subsequent surface elevation function. |
---|
[2681] | 155 | |
---|
| 156 | |
---|
[2853] | 157 | We are continuing to seek out validation data sets to improve the |
---|
[2865] | 158 | accuracy of our model. We recently had success in validating |
---|
[2874] | 159 | the model against the Benchmark Problem $\#$2 Tsunami Run-up |
---|
[2853] | 160 | onto a complex 3-dimensional beach, as provided to the 3rd |
---|
[2871] | 161 | International Workshop on Long Wave Run-up in 2004, see [1]. |
---|
| 162 | We note in [4] your proposal for others to employ the benchmark |
---|
[2853] | 163 | cases described there for experimental or numerical work. |
---|
| 164 | Your model has been compared with the laboratory experiments in 2003 [5] and |
---|
[2874] | 165 | again in 2005 [3] with fairly good agreement. Given |
---|
[2853] | 166 | the numerical model you implemented was the boundary element method, we would |
---|
| 167 | be very interested in comparing our finite volume model using the |
---|
| 168 | approximated surface elevation function with your |
---|
[2865] | 169 | experimental results. Would it therefore be possible for you to provide the |
---|
[2853] | 170 | experimental time series for comparison with ANUGA? |
---|
| 171 | |
---|
[2844] | 172 | \parindent 0pt |
---|
| 173 | |
---|
[2874] | 174 | Thanks for your time and we look forward to your response. |
---|
[2681] | 175 | |
---|
[2801] | 176 | Yours sincerely, |
---|
[2681] | 177 | |
---|
[2801] | 178 | Jane Sexton, Ole Nielsen, Adrian Hitchman and Trevor Dhu. |
---|
[2681] | 179 | |
---|
[2801] | 180 | Risk Research Group, Geoscience Australia. |
---|
[2681] | 181 | |
---|
[2874] | 182 | \newpage |
---|
[2844] | 183 | {\bf References} |
---|
[2801] | 184 | |
---|
[2871] | 185 | [1] Nielsen, O., S. Robers, D. Gray, A. McPherson, and A. Hitchman (2005) |
---|
[2801] | 186 | Hydrodynamic modelling of coastal inundation, MODSIM 2005 International |
---|
| 187 | Congress on Modelling and Simulation. Modelling and Simulation Society |
---|
[2844] | 188 | of Australian and New Zealand, 518-523, \newline URL: |
---|
[2923] | 189 | http://www.mssanz.org.au/modsim05/papers/nielsen.pdf |
---|
[2801] | 190 | |
---|
[2871] | 191 | [2] Watts, P., Grilli, S.T., Tappin, D.R. and Fryer, G.J. (2005), |
---|
[2681] | 192 | Tsunami generation by submarine mass failure Part II: Predictive |
---|
| 193 | equations and case studies, Journal of Waterway, Port, Coastal, and |
---|
| 194 | Ocean Engineering, 131, 298 - 310. |
---|
| 195 | |
---|
[2871] | 196 | [3] Grilli, S.T. and Watts, P. (2005), Tsunami generation by |
---|
[2681] | 197 | submarine mass failure Part I: Modeling, experimental validation, |
---|
| 198 | and sensitivity analyses, Journal of Waterway, Port, Coastal, and |
---|
| 199 | Ocean Engineering, 131, 283 - 297. |
---|
| 200 | |
---|
[2871] | 201 | [4] Watts, P., Imamura, F. and Grilli, S. (2000) |
---|
[2874] | 202 | Comparing Model Simulations of Three Benchmark Tsunami Generation, |
---|
[2853] | 203 | Science of Tsunami Hazards, 18, 2, 107-123. |
---|
| 204 | |
---|
[2871] | 205 | [5] Enet, F., Grilli, S.T. and Watts, P. (2003), Laboratory Experiments for |
---|
[2874] | 206 | Tsunamis Generated by Underwater Landslides: |
---|
| 207 | Comparison with Numerical Modeling, |
---|
[2853] | 208 | Proceedings of the Thirteenth (2003) International Offshore and |
---|
| 209 | Polar Engineering Conference. The International Society of Offshore and |
---|
| 210 | Polar Engineers. |
---|
[2681] | 211 | \end{document} |
---|