Ignore:
Timestamp:
Jun 9, 2005, 2:49:17 PM (19 years ago)
Author:
matthew
Message:

The new method extrapolate_second_order_sw belongs in the shallow_water domain class. If domain.order==2 then extrapolate_second_order_sw performs the second order extrapolation and subsequent limiting for all conserved quantities. This avoids the recalculation of geometric information for each conserved quantity. See comments in the method PyObject?* extrapolate_second_order_sw in shallow_water_ext.c. The notion of the 'auxiliary triangle' for computing gradients is explained in the comments.

For the problem of run_profile.py, with N=128, the combined extrapolation and limit procedures used to consume 13.92 seconds. With the all-in-one method extrapolate_second_order_sw, the extrapolation and limiting procedure takes 6.72 seconds (on hypathia, at the ANU).

Location:
inundation/ga/storm_surge/pyvolution
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • inundation/ga/storm_surge/pyvolution/shallow_water.py

    r1504 r1507  
    126126        msg = 'Third conserved quantity must be "ymomentum"'
    127127        assert self.conserved_quantities[2] == 'ymomentum', msg
    128 
     128       
     129    def extrapolate_second_order_sw(self):
     130        #Call correct module function
     131        #(either from this module or C-extension)
     132        extrapolate_second_order_sw(self)
    129133
    130134    def compute_fluxes(self):
     
    253257        self.writer.store_timestep(name)
    254258
     259####################MH 090605 new extrapolation function belonging to domain class
     260def extrapolate_second_order_sw(domain):
     261    """extrapolate conserved quntities to the vertices of the triangles
     262    Python version to be written after the C version
     263    """
     264    msg = 'Method extrapolate_second_order_sw should be implemented in C'
     265    raise msg
     266####################MH 090605 ###########################################
    255267
    256268#Rotation of momentum vector
     
    472484    domain.timestep = timestep
    473485
     486#MH090605 The following method belongs to the shallow_water domain class
     487#see comments in the corresponding method in shallow_water_ext.c
     488def extrapolate_second_order_sw_c(domain):
     489    """Wrapper calling C version of extrapolate_second_order_sw
     490    """
     491    import sys
     492    from Numeric import zeros, Float
     493
     494    N = domain.number_of_elements
     495
     496    #Shortcuts
     497    Stage = domain.quantities['stage']
     498    Xmom = domain.quantities['xmomentum']
     499    Ymom = domain.quantities['ymomentum']
     500    from shallow_water_ext import extrapolate_second_order_sw
     501    extrapolate_second_order_sw(domain,domain.surrogate_neighbours,
     502                                domain.number_of_boundaries,
     503                                domain.centroid_coordinates,
     504                                Stage.centroid_values,
     505                                Xmom.centroid_values,
     506                                Ymom.centroid_values,
     507                                domain.vertex_coordinates,
     508                                Stage.vertex_values,
     509                                Xmom.vertex_values,
     510                                Ymom.vertex_values)
    474511
    475512def compute_fluxes_c(domain):
     
    539576
    540577    #Extrapolate all conserved quantities
    541     for name in domain.conserved_quantities:
    542         Q = domain.quantities[name]
    543         if domain.order == 1:
     578    #MH090605 if second order, perform the extrapolation and limiting on all of the conserved quantities
     579    if (domain.order == 1):
     580        for name in domain.conserved_quantities:
     581            Q = domain.quantities[name]
    544582            Q.extrapolate_first_order()
    545         elif domain.order == 2:
    546             Q.extrapolate_second_order()
    547             Q.limit()
    548         else:
    549             raise 'Unknown order'
     583    elif domain.order == 2:
     584        domain.extrapolate_second_order_sw()
     585    else:
     586        raise 'Unknown order'
     587
     588    #old code:
     589    #for name in domain.conserved_quantities:
     590    #    Q = domain.quantities[name]
     591    #    if domain.order == 1:
     592    #        Q.extrapolate_first_order()
     593    #    elif domain.order == 2:
     594    #        #Q.extrapolate_second_order()
     595    #        Q.limit()
     596    #    else:
     597    #        raise 'Unknown order'
    550598
    551599    #Take bed elevation into account when water heights are small
     
    16351683    from shallow_water_ext import rotate, assign_windfield_values
    16361684    compute_fluxes = compute_fluxes_c
     1685    extrapolate_second_order_sw=extrapolate_second_order_sw_c
    16371686    gravity = gravity_c
    16381687    manning_friction = manning_friction_c
  • inundation/ga/storm_surge/pyvolution/shallow_water_ext.c

    r1505 r1507  
    4747}
    4848
    49 
     49int find_qmin_and_qmax(double dq0, double dq1, double dq2, double *qmin, double *qmax){
     50  //Considering the centroid of an FV triangle and the vertices of its auxiliary triangle, find
     51  //qmin=min(q)-qc and qmax=max(q)-qc, where min(q) and max(q) are respectively min and max over the
     52  //four values (at the centroid of the FV triangle and the auxiliary triangle vertices),
     53  //and qc is the centroid
     54  //dq0=q(vertex0)-q(centroid of FV triangle)
     55  //dq1=q(vertex1)-q(vertex0)
     56  //dq2=q(vertex2)-q(vertex0)
     57  if (dq0>=0.0){
     58    if (dq1>=dq2){
     59      if (dq1>=0.0)
     60        *qmax=dq0+dq1;
     61      else
     62        *qmax=dq0;
     63      if ((*qmin=dq0+dq2)<0)
     64        ;//qmin is already set to correct value
     65      else
     66        *qmin=0.0;
     67    }
     68    else{//dq1<dq2
     69      if (dq2>0)
     70        *qmax=dq0+dq2;
     71      else
     72        *qmax=dq0;
     73      if ((*qmin=dq0+dq1)<0)
     74        ;//qmin is the correct value
     75      else
     76        *qmin=0.0;
     77    }
     78  }
     79  else{//dq0<0
     80    if (dq1<=dq2){
     81      if (dq1<0.0)
     82        *qmin=dq0+dq1;
     83      else
     84        *qmin=dq0;
     85      if ((*qmax=dq0+dq2)>0.0)
     86        ;//qmax is already set to the correct value
     87      else
     88        *qmax=0.0;
     89    }
     90    else{//dq1>dq2
     91      if (dq2<0.0)
     92        *qmin=dq0+dq2;
     93      else
     94        *qmin=dq0;
     95      if ((*qmax=dq0+dq1)>0.0) 
     96        ;//qmax is already set to the correct value
     97      else
     98        *qmax=0.0;
     99    }
     100  }
     101  return 0;
     102}
     103
     104int limit_gradient(double *dqv, double qmin, double qmax, double beta_w){
     105  //given provisional jumps dqv from the FV triangle centroid to its vertices and
     106  //jumps qmin (qmax) between the centroid of the FV triangle and the
     107  //minimum (maximum) of the values at the centroid of the FV triangle and the auxiliary triangle vertices,
     108  //calculate a multiplicative factor phi by which the provisional vertex jumps are to be limited
     109  int i;
     110  double r=1000.0, r0=1.0, phi=1.0;
     111  static double TINY = 1.0e-100;//to avoid machine accuracy problems.
     112  //Any provisional jump with magnitude < TINY does not contribute to the limiting process.
     113  for (i=0;i<3;i++){
     114    if (dqv[i]<-TINY)
     115      r0=qmin/dqv[i];
     116    if (dqv[i]>TINY)
     117      r0=qmax/dqv[i];
     118    r=min(r0,r);
     119    //
     120  }
     121  phi=min(r*beta_w,1.0);
     122  for (i=0;i<3;i++)
     123    dqv[i]=dqv[i]*phi;
     124  return 0;
     125}
    50126
    51127// Computational function for flux computation (using stage w=z+h)
     
    426502  return Py_BuildValue("");
    427503}
     504
     505PyObject *extrapolate_second_order_sw(PyObject *self, PyObject *args) {
     506  /*Compute the vertex values based on a linear reconstruction on each triangle
     507    These values are calculated as follows:
     508    1) For each triangle not adjacent to a boundary, we consider the auxiliary triangle
     509    formed by the centroids of its three neighbours.
     510    2) For each conserved quantity, we integrate around the auxiliary triangle's boundary the product
     511    of the quantity and the outward normal vector. Dividing by the triangle area gives (a,b), the average
     512    of the vector (q_x,q_y) on the auxiliary triangle. We suppose that the linear reconstruction on the
     513    original triangle has gradient (a,b).
     514    3) Provisional vertex junmps dqv[0,1,2] are computed and these are then limited by calling the functions
     515    find_qmin_and_qmax and limit_gradient
     516
     517    Python call:
     518    extrapolate_second_order_sw(domain.surrogate_neighbours,
     519                                domain.number_of_boundaries
     520                                domain.centroid_coordinates,
     521                                Stage.centroid_values
     522                                Xmom.centroid_values
     523                                Ymom.centroid_values
     524                                domain.vertex_coordinates,
     525                                Stage.vertex_values,
     526                                Xmom.vertex_values,
     527                                Ymom.vertex_values)   
     528
     529    Post conditions:
     530            The vertices of each triangle have values from a limited linear reconstruction
     531            based on centroid values
     532
     533  */
     534  PyArrayObject *surrogate_neighbours,
     535    *number_of_boundaries,
     536    *centroid_coordinates,
     537    *stage_centroid_values,
     538    *xmom_centroid_values,
     539    *ymom_centroid_values,
     540    *vertex_coordinates,
     541    *stage_vertex_values,
     542    *xmom_vertex_values,
     543    *ymom_vertex_values;
     544  PyObject *domain, *Tmp;
     545  //Local variables
     546  double a, b;//gradient vector, not stored but used to calculate vertex values from centroids
     547  int number_of_elements,k,k0,k1,k2,k3,k6,coord_index,i;
     548  double x,y,x0,y0,x1,y1,x2,y2,xv0,yv0,xv1,yv1,xv2,yv2;//vertices of the auxiliary triangle
     549  double dx1,dx2,dy1,dy2,dxv0,dxv1,dxv2,dyv0,dyv1,dyv2,dq0,dq1,dq2,area2;
     550  double dqv[3], qmin, qmax, beta_w;//provisional jumps from centroids to v'tices and safety factor re limiting
     551  //by which these jumps are limited
     552  // Convert Python arguments to C
     553  if (!PyArg_ParseTuple(args, "OOOOOOOOOOO",
     554                        &domain,
     555                        &surrogate_neighbours,
     556                        &number_of_boundaries,
     557                        &centroid_coordinates,
     558                        &stage_centroid_values,
     559                        &xmom_centroid_values,
     560                        &ymom_centroid_values,
     561                        &vertex_coordinates,
     562                        &stage_vertex_values,
     563                        &xmom_vertex_values,
     564                        &ymom_vertex_values)) {
     565    PyErr_SetString(PyExc_RuntimeError, "Input arguments failed");
     566    return NULL;
     567  }
     568
     569  //get the safety factor beta_w, set in the config.py file. This is used in the limiting process
     570  Tmp = PyObject_GetAttrString(domain, "beta_w");
     571  if (!Tmp)
     572    return NULL;
     573  beta_w = PyFloat_AsDouble(Tmp);
     574  Py_DECREF(Tmp);
     575  number_of_elements = stage_centroid_values -> dimensions[0];
     576  for (k=0; k<number_of_elements; k++) {
     577    k3=k*3;
     578    k6=k*6;
     579
     580    if (((long *) number_of_boundaries->data)[k]==3){/*no neighbours, set gradient on the triangle to zero*/
     581      ((double *) stage_vertex_values->data)[k3]=((double *)stage_centroid_values->data)[k];
     582      ((double *) stage_vertex_values->data)[k3+1]=((double *)stage_centroid_values->data)[k];
     583      ((double *) stage_vertex_values->data)[k3+2]=((double *)stage_centroid_values->data)[k];
     584      ((double *) xmom_vertex_values->data)[k3]=((double *)xmom_centroid_values->data)[k];
     585      ((double *) xmom_vertex_values->data)[k3+1]=((double *)xmom_centroid_values->data)[k];
     586      ((double *) xmom_vertex_values->data)[k3+2]=((double *)xmom_centroid_values->data)[k];
     587      ((double *) ymom_vertex_values->data)[k3]=((double *)ymom_centroid_values->data)[k];
     588      ((double *) ymom_vertex_values->data)[k3+1]=((double *)ymom_centroid_values->data)[k];
     589      ((double *) ymom_vertex_values->data)[k3+2]=((double *)ymom_centroid_values->data)[k];
     590      continue;
     591    }
     592    else {//we will need centroid coordinates and vertex coordinates of the triangle
     593      //get the vertex coordinates of the FV triangle
     594      xv0=((double *)vertex_coordinates->data)[k6]; yv0=((double *)vertex_coordinates->data)[k6+1];
     595      xv1=((double *)vertex_coordinates->data)[k6+2]; yv1=((double *)vertex_coordinates->data)[k6+3];
     596      xv2=((double *)vertex_coordinates->data)[k6+4]; yv2=((double *)vertex_coordinates->data)[k6+5];
     597      //get the centroid coordinates of the FV triangle
     598      coord_index=2*k;
     599      x=((double *)centroid_coordinates->data)[coord_index];
     600      y=((double *)centroid_coordinates->data)[coord_index+1];
     601      //store x- and y- differentials for the vertices of the FV triangle relative to the centroid
     602      dxv0=xv0-x; dxv1=xv1-x; dxv2=xv2-x;
     603      dyv0=yv0-y; dyv1=yv1-y; dyv2=yv2-y;
     604    }
     605    if (((long *)number_of_boundaries->data)[k]<=1){
     606      //if no boundaries, auxiliary triangle is formed from the centroids of the three neighbours
     607      //if one boundary, auxiliary triangle is formed from this centroid and its two neighbours
     608      k0=((long *)surrogate_neighbours->data)[k3];
     609      k1=((long *)surrogate_neighbours->data)[k3+1];
     610      k2=((long *)surrogate_neighbours->data)[k3+2];
     611      //get the auxiliary triangle's vertex coordinates (really the centroids of neighbouring triangles)
     612      coord_index=2*k0;
     613      x0=((double *)centroid_coordinates->data)[coord_index];
     614      y0=((double *)centroid_coordinates->data)[coord_index+1];
     615      coord_index=2*k1;
     616      x1=((double *)centroid_coordinates->data)[coord_index];
     617      y1=((double *)centroid_coordinates->data)[coord_index+1];
     618      coord_index=2*k2;
     619      x2=((double *)centroid_coordinates->data)[coord_index];
     620      y2=((double *)centroid_coordinates->data)[coord_index+1];
     621      //store x- and y- differentials for the vertices of the auxiliary triangle
     622      dx1=x1-x0; dx2=x2-x0;
     623      dy1=y1-y0; dy2=y2-y0;
     624      //calculate 2*area of the auxiliary triangle
     625      area2 = dy2*dx1 - dy1*dx2;//the triangle is guaranteed to be counter-clockwise
     626      //If the mesh is 'weird' near the boundary, the trianlge might be flat or clockwise:
     627      if (area2<=0)
     628        return NULL;
     629
     630      //### stage ###
     631      //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid
     632      dq0=((double *)stage_centroid_values->data)[k0]-((double *)stage_centroid_values->data)[k];
     633      //calculate differentials between the vertices of the auxiliary triangle
     634      dq1=((double *)stage_centroid_values->data)[k1]-((double *)stage_centroid_values->data)[k0];
     635      dq2=((double *)stage_centroid_values->data)[k2]-((double *)stage_centroid_values->data)[k0];
     636      //calculate the gradient of stage on the auxiliary triangle
     637      a = dy2*dq1 - dy1*dq2;
     638      a /= area2;
     639      b = dx1*dq2 - dx2*dq1;
     640      b /= area2;
     641      //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited
     642      dqv[0]=a*dxv0+b*dyv0;
     643      dqv[1]=a*dxv1+b*dyv1;
     644      dqv[2]=a*dxv2+b*dyv2;
     645      //now we want to find min and max of the centroid and the vertices of the auxiliary triangle
     646      //and compute jumps from the centroid to the min and max
     647      find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax);
     648      limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited
     649      for (i=0;i<3;i++)
     650        ((double *)stage_vertex_values->data)[k3+i]=((double *)stage_centroid_values->data)[k]+dqv[i];
     651
     652      //### xmom ###
     653      //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid
     654      dq0=((double *)xmom_centroid_values->data)[k0]-((double *)xmom_centroid_values->data)[k];
     655      //calculate differentials between the vertices of the auxiliary triangle
     656      dq1=((double *)xmom_centroid_values->data)[k1]-((double *)xmom_centroid_values->data)[k0];
     657      dq2=((double *)xmom_centroid_values->data)[k2]-((double *)xmom_centroid_values->data)[k0];
     658      //calculate the gradient of xmom on the auxiliary triangle
     659      a = dy2*dq1 - dy1*dq2;
     660      a /= area2;
     661      b = dx1*dq2 - dx2*dq1;
     662      b /= area2;
     663      //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited
     664      dqv[0]=a*dxv0+b*dyv0;
     665      dqv[1]=a*dxv1+b*dyv1;
     666      dqv[2]=a*dxv2+b*dyv2;
     667      //now we want to find min and max of the centroid and the vertices of the auxiliary triangle
     668      //and compute jumps from the centroid to the min and max
     669      find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax);
     670      limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited   
     671      for (i=0;i<3;i++)
     672        ((double *)xmom_vertex_values->data)[k3+i]=((double *)xmom_centroid_values->data)[k]+dqv[i];
     673
     674      //### ymom ###
     675      //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid
     676      dq0=((double *)ymom_centroid_values->data)[k0]-((double *)ymom_centroid_values->data)[k];
     677      //calculate differentials between the vertices of the auxiliary triangle
     678      dq1=((double *)ymom_centroid_values->data)[k1]-((double *)ymom_centroid_values->data)[k0];
     679      dq2=((double *)ymom_centroid_values->data)[k2]-((double *)ymom_centroid_values->data)[k0];
     680      //calculate the gradient of xmom on the auxiliary triangle
     681      a = dy2*dq1 - dy1*dq2;
     682      a /= area2;
     683      b = dx1*dq2 - dx2*dq1;
     684      b /= area2;
     685      //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited
     686      dqv[0]=a*dxv0+b*dyv0;
     687      dqv[1]=a*dxv1+b*dyv1;
     688      dqv[2]=a*dxv2+b*dyv2;
     689      //now we want to find min and max of the centroid and the vertices of the auxiliary triangle
     690      //and compute jumps from the centroid to the min and max
     691      find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax);
     692      limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited   
     693      for (i=0;i<3;i++)
     694        ((double *)ymom_vertex_values->data)[k3+i]=((double *)ymom_centroid_values->data)[k]+dqv[i];
     695    }//if (number_of_boundaries[k]<=1)
     696    else{//number_of_boundaries==2
     697      //one internal neighbour and gradient is in direction of the neighbour's centroid
     698      //find the only internal neighbour
     699      for (k2=k3;k2<k3+3;k2++){//k2 just indexes the edges of triangle k
     700        if (((long *)surrogate_neighbours->data)[k2]!=k)//find internal neighbour of triabngle k
     701          break;
     702      }
     703      if ((k2==k3+3))//if we didn't find an internal neighbour
     704        return NULL;//error
     705      k1=((long *)surrogate_neighbours->data)[k2];
     706      //the coordinates of the triangle are already (x,y). Get centroid of the neighbour (x1,y1)
     707      coord_index=2*k1;
     708      x1=((double *)centroid_coordinates->data)[coord_index];
     709      y1=((double *)centroid_coordinates->data)[coord_index+1];
     710      //compute x- and y- distances between the centroid of the FV triangle and that of its neighbour
     711      dx1=x1-x; dy1=y1-y;
     712      //set area2 as the square of the distance
     713      area2=dx1*dx1+dy1*dy1;
     714      //set dx2=(x1-x0)/((x1-x0)^2+(y1-y0)^2) and dy2=(y1-y0)/((x1-x0)^2+(y1-y0)^2) which
     715      //respectively correspond to the x- and y- gradients of the conserved quantities
     716      dx2=1.0/area2;
     717      dy2=dx2*dy1;
     718      dx2*=dx1;
     719     
     720      //## stage ###
     721      //compute differentials
     722      dq1=((double *)stage_centroid_values->data)[k1]-((double *)stage_centroid_values->data)[k];
     723      //calculate the gradient between the centroid of the FV triangle and that of its neighbour
     724      a=dq1*dx2;
     725      b=dq1*dy2;
     726      //calculate provisional vertex jumps, to be limited
     727      dqv[0]=a*dxv0+b*dyv0;
     728      dqv[1]=a*dxv1+b*dyv1;
     729      dqv[2]=a*dxv2+b*dyv2;
     730      //now limit the jumps
     731      if (dq1>=0.0){
     732        qmin=0.0;
     733        qmax=dq1;
     734      }
     735      else{
     736        qmin=dq1;
     737        qmax=0.0;
     738      }
     739      limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited   
     740      for (i=0;i<3;i++)
     741        ((double *)stage_vertex_values->data)[k3+i]=((double *)stage_centroid_values->data)[k]+dqv[i];
     742
     743      //## xmom ###
     744      //compute differentials
     745      dq1=((double *)xmom_centroid_values->data)[k1]-((double *)xmom_centroid_values->data)[k];
     746      //calculate the gradient between the centroid of the FV triangle and that of its neighbour
     747      a=dq1*dx2;
     748      b=dq1*dy2;
     749      //calculate provisional vertex jumps, to be limited
     750      dqv[0]=a*dxv0+b*dyv0;
     751      dqv[1]=a*dxv1+b*dyv1;
     752      dqv[2]=a*dxv2+b*dyv2;
     753      //now limit the jumps
     754      if (dq1>=0.0){
     755        qmin=0.0;
     756        qmax=dq1;
     757      }
     758      else{
     759        qmin=dq1;
     760        qmax=0.0;
     761      }
     762      limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited   
     763      for (i=0;i<3;i++)
     764        ((double *)xmom_vertex_values->data)[k3+i]=((double *)xmom_centroid_values->data)[k]+dqv[i];
     765
     766      //## ymom ###
     767      //compute differentials
     768      dq1=((double *)ymom_centroid_values->data)[k1]-((double *)ymom_centroid_values->data)[k];
     769      //calculate the gradient between the centroid of the FV triangle and that of its neighbour
     770      a=dq1*dx2;
     771      b=dq1*dy2;
     772      //calculate provisional vertex jumps, to be limited
     773      dqv[0]=a*dxv0+b*dyv0;
     774      dqv[1]=a*dxv1+b*dyv1;
     775      dqv[2]=a*dxv2+b*dyv2;
     776      //now limit the jumps
     777      if (dq1>=0.0){
     778        qmin=0.0;
     779        qmax=dq1;
     780      }
     781      else{
     782        qmin=dq1;
     783        qmax=0.0;
     784      }
     785      limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited   
     786      for (i=0;i<3;i++)
     787        ((double *)ymom_vertex_values->data)[k3+i]=((double *)ymom_centroid_values->data)[k]+dqv[i];
     788    }//else [number_of_boudaries==2]
     789  }//for k=0 to number_of_elements-1
     790  return Py_BuildValue("");
     791}//extrapolate_second-order_sw
    428792
    429793PyObject *rotate(PyObject *self, PyObject *args, PyObject *kwargs) {
     
    8661230
    8671231  {"rotate", (PyCFunction)rotate, METH_VARARGS | METH_KEYWORDS, "Print out"},
     1232  {"extrapolate_second_order_sw", extrapolate_second_order_sw, METH_VARARGS, "Print out"},
    8681233  {"compute_fluxes", compute_fluxes, METH_VARARGS, "Print out"},
    8691234  {"gravity", gravity, METH_VARARGS, "Print out"},
Note: See TracChangeset for help on using the changeset viewer.