Changeset 2727
- Timestamp:
- Apr 19, 2006, 5:39:16 PM (19 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
documentation/user_manual/anuga_user_manual.tex
r2720 r2727 1122 1122 verbose=False} 1123 1123 This function returns a callable object representing an initial water 1124 displacement generated by a submarine sediment slide. 1125 1126 The arguments include the downslope slide length, the water depth to the slide centre of mass, 1127 and the bathymetric slope. 1124 displacement generated by a submarine sediment failure. These failures can take the form of 1125 a submarine slump or slide. 1126 1127 The arguments include as a minimum, the slump or slide length, the water depth to the centre of sediment 1128 mass, and the bathymetric slope. Other slump or slide parameters can be included if they are known. 1128 1129 \end{funcdesc} 1129 1130 … … 1850 1851 \item \indexedbold{\anuga} Name of software (joint development between ANU and GA) 1851 1852 1852 \item \indexedbold{domain} 1853 1854 \item \indexedbold{Dirichlet boundary} 1853 \item \indexedbold{domain} The domain of a function is the set of all input values to the function. 1854 1855 \item \indexedbold{Dirichlet boundary} - A Dirichlet boundary condition imposed on a differential equation 1856 which specifies the values the solution is to take on the boundary of the domain. 1855 1857 1856 1858 \item \indexedbold{elevation} - refers to bathymetry and topography 1857 1859 1858 \item \indexedbold{bathymetry} offshore1859 1860 \item \indexedbold{topography} onshore1861 1862 \item \indexedbold{evolution} integration of the shallow water wave equations over time1860 \item \indexedbold{bathymetry} - offshore elevation 1861 1862 \item \indexedbold{topography} - onshore elevation 1863 1864 \item \indexedbold{evolution} - integration of the shallow water wave equations over time 1863 1865 1864 1866 \item \indexedbold{forcing term} 1865 1867 1866 \item \indexedbold{IDLE} Development environment shipped with Python1867 1868 \item \indexedbold{Manning friction coefficient} 1869 1870 \item \indexedbold{mesh} Triangulation of domain1868 \item \indexedbold{IDLE} - Development environment shipped with Python 1869 1870 \item \indexedbold{Manning friction coefficient} 1871 1872 \item \indexedbold{mesh} - Triangulation of domain 1871 1873 1872 1874 \item \indexedbold{meshfile} [generic word for either .tsh or … … 1876 1878 .xya file] 1877 1879 1878 \item \indexedbold{grid} evenly spaced1880 \item \indexedbold{grid} - evenly spaced mesh 1879 1881 1880 1882 \item \indexedbold{NetCDF} … … 1884 1886 \item \indexedbold{pyvolution} does this really need to be here? it's a class/module? 1885 1887 1886 \item \indexedbold{conserved quantity} conserved (sta te, x and y momentum)1888 \item \indexedbold{conserved quantity} conserved (stage, x and y momentum) 1887 1889 1888 1890 \item \indexedbold{reflective boundary} … … 1894 1896 % \item \indexedbold{try this} 1895 1897 1896 \item \indexedbold{swollen} visualisation tool1897 1898 \item \indexedbold{time boundary} defined in the manual (flog from there)1899 1900 \item \indexedbold{transmissive boundary} defined in the manual (flog from there)1901 1902 \item \indexedbold{xmomentum} conserved quantity (note, two-dimensional SWW equations say only x and y and NOT z)1903 1904 \item \indexedbold{ymomentum} conserved quantity1905 1906 \item \indexedbold{resolution} The maximal area of a triangular cell in a mesh1907 1908 \item \indexedbold{polygon} A sequence of points in the plane. (Arbitrary polygons can be created1898 \item \indexedbold{swollen} - visualisation tool 1899 1900 \item \indexedbold{time boundary} - defined in the manual (flog from there) 1901 1902 \item \indexedbold{transmissive boundary} - defined in the manual (flog from there) 1903 1904 \item \indexedbold{xmomentum} - conserved quantity (note, two-dimensional SWW equations say only x and y and NOT z) 1905 1906 \item \indexedbold{ymomentum} - conserved quantity 1907 1908 \item \indexedbold{resolution} - The maximal area of a triangular cell in a mesh 1909 1910 \item \indexedbold{polygon} - A sequence of points in the plane. (Arbitrary polygons can be created 1909 1911 in this way.) 1910 1912 \anuga represents a polygon in one of two ways. One way is to represent it as a … … 1917 1919 NOTE: More can be read in the module utilities/polygon.py .... 1918 1920 1919 \item \indexedbold{easting} 1920 1921 \item \indexedbold{northing} 1922 1923 \item \indexedbold{latitude} 1924 1925 \item \indexedbold{longitude} 1926 1927 \item \indexedbold{edge} 1928 1929 \item \indexedbold{vertex} 1930 1931 \item \indexedbold{finite volume} 1932 1933 \item \indexedbold{flux} 1934 1935 \item \indexedbold{Digital Elevation Model (DEM)} 1921 \item \indexedbold{easting} - A rectangular (x,y) coordinate measurement of distance east from a north-south reference line, 1922 usually a meridian used as the axis of origin within a map zone or projection. Easting is a UTM (Universal Transverse Mercator) Coordinate. 1923 1924 \item \indexedbold{northing} - A rectangular (x,y) coordinate measurement of distance north from a north-south reference line, 1925 usually a meridian used as the axis of origin within a map zone or projection. Northing is a UTM (Universal Transverse Mercator) Coordinate. 1926 1927 1928 \item \indexedbold{latitude} - The angular distance on a mericlear north and south of the equator, expressed in degrees and minutes. 1929 1930 \item \indexedbold{longitude} - The angular distance east or west, between the meridian of a particular place on Earth and that of the 1931 Prime Meridian (located in Greenwich, England) expressed in degrees or time. 1932 1933 \item \indexedbold{edge} - A triangulare cell within the computational mesh can be depicted as a set of vertices joined by lines (the edges). 1934 1935 \item \indexedbold{vertex} - A point at which edges meet. 1936 1937 \item \indexedbold{finite volume} - The method evaluates the terms in the shallow water wave equationas fluxes at the surfaces of each 1938 finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods are conservative. 1939 Another advantage of the finite volume method is that it is easily formulated to allow for unstructured meshes. 1940 The method is used in many computational fluid dynamics packages. 1941 1942 1943 \item \indexedbold{flux} - the amount of flow through the volume per unit time 1944 1945 \item \indexedbold{Digital Elevation Model (DEM)} - DEMs are digital files consisting of points of elevations, 1946 sampled systematically at equally spaced intervals. 1936 1947 1937 1948
Note: See TracChangeset
for help on using the changeset viewer.