Changeset 8722


Ignore:
Timestamp:
Mar 5, 2013, 1:41:47 AM (12 years ago)
Author:
mungkasi
Message:

Updating code and adding report for avalanche dry.

Location:
trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_dry
Files:
1 added
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_dry/numerical_avalanche_dry.py

    r8642 r8722  
    149149
    150150#------------------------------------------------------------------------------
     151# Produce a documentation of parameters
     152#------------------------------------------------------------------------------
     153parameter_file=open('parameters.tex', 'w')
     154parameter_file.write('\\begin{verbatim}\n')
     155from pprint import pprint
     156pprint(domain.get_algorithm_parameters(),parameter_file,indent=4)
     157parameter_file.write('\\end{verbatim}\n')
     158parameter_file.close()
     159
     160#------------------------------------------------------------------------------
    151161# Evolve system through time
    152162#------------------------------------------------------------------------------
  • trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_dry/results.tex

    r8642 r8722  
    22\section{Avalanche involving a dry area}
    33
    4 An avalanche test problem involving a dry area. Here debris is approximated as water. The simulation should show a rarefaction fan and wetting process.
     4An avalanche problem involving a dry area is solved using shallow water approach. This problem is very similar to the dry dam break, but it is on a sloping topography. The debris could be snow, sand, or even rock. The simulation should show a rarefaction and wetting process, just like the dry dam break problem. The analytical solution of this problem was derived by Mungkasi and Roberts~\cite{MR2011DA}. This shallow water approach to solve debris avalanche problems was also implemented by a number of researchers, such as Mangeney et al.~\cite{MHR2000} and Naaim et al.~\cite{NVC1997}.
     5
     6The initial condition is
     7\begin{equation} \label{eq:dap_init}
     8u(x,0)=0, ~~v(x,y)=0, ~~\textrm{and}~~
     9h(x,0) = \left\{ \begin{array}{ll}
     10h_1 & \textrm{if $x < 0$}\\
     110 & \textrm{if $x > 0$}\\
     12\end{array} \right.
     13\end{equation}
     14where $h_1>0$. The topography is a flat bed with positive slope.
     15
     16The analytical solution~\cite{MR2011DA} at time $t>0$ is
     17\begin{equation}
     18h(x) = \left\{ \begin{array}{ll}
     190 & \textrm{if $x \leq -2 c_0 t + \frac12 mt^2$}\\
     20h_R=\frac{1}{9g} \left( \frac{x}{t} + 2c_0 - \frac12 mt \right)^2 & \textrm{if $-2 c_0 t + \frac12 mt^2 \leq x \leq c_0 t + \frac12 mt^2$}\\
     21h_0 & \textrm{if $x \geq c_0 t + \frac12 mt^2$}\\
     22\end{array} \right.
     23\end{equation}
     24which is the free surface and
     25\begin{equation}
     26u(x) = \left\{ \begin{array}{ll}
     270 & \textrm{if $x \leq -2 c_0 t + \frac12 mt^2$}\\
     28u_R=\frac23 \left( \frac{x}{t} - c_0 + mt \right) & \textrm{if $-2 c_0 t + \frac12 mt^2 \leq x \leq c_0 t + \frac12 mt^2$}\\
     29mt & \textrm{if $x \geq c_0 t + \frac12 mt^2$}\\
     30\end{array} \right.
     31\end{equation}
     32which is the velocity. Here $m=-g\tan{\theta}+F$, where $\tan{\theta}$ is the slope of the topography. Variable $F$ is the Coulomb-type friction given by
     33\begin{equation}
     34F=g \cos^2{\theta} \tan{\delta},
     35\end{equation}
     36in which $\tan{\delta}$ is a given value of friction slope such that $\tan{\delta} \leq \tan{\theta}$.
     37
    538
    639\subsection{Results}
    740
    8 
    9 We should see excellent agreement between the analytical and numerical solutions.
    10 
     41For our test, we consider $h_0=20$ in (\ref{eq:dap_init}).
     42The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. We should see excellent agreement between the analytical and numerical solutions. The wet/dry interface is difficult to resolve and it usually produces large errors, similar to the dry dam break problem.
    1143\begin{figure}[h]
    1244\begin{center}
Note: See TracChangeset for help on using the changeset viewer.