Changeset 8722
- Timestamp:
- Mar 5, 2013, 1:41:47 AM (12 years ago)
- Location:
- trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_dry
- Files:
-
- 1 added
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_dry/numerical_avalanche_dry.py
r8642 r8722 149 149 150 150 #------------------------------------------------------------------------------ 151 # Produce a documentation of parameters 152 #------------------------------------------------------------------------------ 153 parameter_file=open('parameters.tex', 'w') 154 parameter_file.write('\\begin{verbatim}\n') 155 from pprint import pprint 156 pprint(domain.get_algorithm_parameters(),parameter_file,indent=4) 157 parameter_file.write('\\end{verbatim}\n') 158 parameter_file.close() 159 160 #------------------------------------------------------------------------------ 151 161 # Evolve system through time 152 162 #------------------------------------------------------------------------------ -
trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_dry/results.tex
r8642 r8722 2 2 \section{Avalanche involving a dry area} 3 3 4 An avalanche test problem involving a dry area. Here debris is approximated as water. The simulation should show a rarefaction fan and wetting process. 4 An avalanche problem involving a dry area is solved using shallow water approach. This problem is very similar to the dry dam break, but it is on a sloping topography. The debris could be snow, sand, or even rock. The simulation should show a rarefaction and wetting process, just like the dry dam break problem. The analytical solution of this problem was derived by Mungkasi and Roberts~\cite{MR2011DA}. This shallow water approach to solve debris avalanche problems was also implemented by a number of researchers, such as Mangeney et al.~\cite{MHR2000} and Naaim et al.~\cite{NVC1997}. 5 6 The initial condition is 7 \begin{equation} \label{eq:dap_init} 8 u(x,0)=0, ~~v(x,y)=0, ~~\textrm{and}~~ 9 h(x,0) = \left\{ \begin{array}{ll} 10 h_1 & \textrm{if $x < 0$}\\ 11 0 & \textrm{if $x > 0$}\\ 12 \end{array} \right. 13 \end{equation} 14 where $h_1>0$. The topography is a flat bed with positive slope. 15 16 The analytical solution~\cite{MR2011DA} at time $t>0$ is 17 \begin{equation} 18 h(x) = \left\{ \begin{array}{ll} 19 0 & \textrm{if $x \leq -2 c_0 t + \frac12 mt^2$}\\ 20 h_R=\frac{1}{9g} \left( \frac{x}{t} + 2c_0 - \frac12 mt \right)^2 & \textrm{if $-2 c_0 t + \frac12 mt^2 \leq x \leq c_0 t + \frac12 mt^2$}\\ 21 h_0 & \textrm{if $x \geq c_0 t + \frac12 mt^2$}\\ 22 \end{array} \right. 23 \end{equation} 24 which is the free surface and 25 \begin{equation} 26 u(x) = \left\{ \begin{array}{ll} 27 0 & \textrm{if $x \leq -2 c_0 t + \frac12 mt^2$}\\ 28 u_R=\frac23 \left( \frac{x}{t} - c_0 + mt \right) & \textrm{if $-2 c_0 t + \frac12 mt^2 \leq x \leq c_0 t + \frac12 mt^2$}\\ 29 mt & \textrm{if $x \geq c_0 t + \frac12 mt^2$}\\ 30 \end{array} \right. 31 \end{equation} 32 which is the velocity. Here $m=-g\tan{\theta}+F$, where $\tan{\theta}$ is the slope of the topography. Variable $F$ is the Coulomb-type friction given by 33 \begin{equation} 34 F=g \cos^2{\theta} \tan{\delta}, 35 \end{equation} 36 in which $\tan{\delta}$ is a given value of friction slope such that $\tan{\delta} \leq \tan{\theta}$. 37 5 38 6 39 \subsection{Results} 7 40 8 9 We should see excellent agreement between the analytical and numerical solutions. 10 41 For our test, we consider $h_0=20$ in (\ref{eq:dap_init}). 42 The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. We should see excellent agreement between the analytical and numerical solutions. The wet/dry interface is difficult to resolve and it usually produces large errors, similar to the dry dam break problem. 11 43 \begin{figure}[h] 12 44 \begin{center}
Note: See TracChangeset
for help on using the changeset viewer.