Changeset 8723


Ignore:
Timestamp:
Mar 5, 2013, 1:42:57 AM (12 years ago)
Author:
mungkasi
Message:

Updating code and adding report for avalanche wet.

Location:
trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_wet
Files:
1 added
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_wet/numerical_avalanche_wet.py

    r8643 r8723  
    157157
    158158
     159
     160#------------------------------------------------------------------------------
     161# Produce a documentation of parameters
     162#------------------------------------------------------------------------------
     163parameter_file=open('parameters.tex', 'w')
     164parameter_file.write('\\begin{verbatim}\n')
     165from pprint import pprint
     166pprint(domain.get_algorithm_parameters(),parameter_file,indent=4)
     167parameter_file.write('\\end{verbatim}\n')
     168parameter_file.close()
     169
    159170#------------------------------------------------------------------------------
    160171# Evolve system through time
  • trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_wet/results.tex

    r8643 r8723  
    22\section{Avalanche involving a shock wave}
    33
    4 An avalanche test problem involving a shock wave. Here debris is approximated as water. The simulation should show a rarefaction fan and a shock wave.
     4We consider an avalanche involving a shock wave.
     5This problem is similar to dam break on wet areas, and so, it involves a shock. We consider a flat topography with positive slope. Shallow water approach is used to solve the problem. The analytical solution of this problem was derived by Mungkasi and Roberts~\cite{MR2012PAAG}. This shallow water approach was also implemented by a number of researchers, such as Mangeney et al.~\cite{MHR2000} and Naaim et al.~\cite{NVC1997}. The simulation should show a rarefaction and a shock.
     6
     7
     8
     9The initial condition is
     10\begin{equation} \label{eq:dap_init}
     11u(x,0)=0, ~~v(x,y)=0, ~~\textrm{and}~~
     12h(x,0) = \left\{ \begin{array}{ll}
     13h_1 & \textrm{if $x < 0$}\\
     14h_0 & \textrm{if $x > 0$}\\
     15\end{array} \right.
     16\end{equation}
     17where $h_0>h_1>0$. The topography is a flat bed with positive slope. Note that when $h_1=0$, the problem becomes avalanche involving a dry area~\cite{MR2011DA}.
     18
     19The analytical solution~\cite{MR2012PAAG} at time $t>0$ is
     20\begin{equation}
     21h(x,t) = \left\{ \begin{array}{ll}
     22h_1 & \textrm{if $x < \sigma t + \frac12 mt^2$}\,,\\
     23h_2 & \textrm{if $ \sigma t + \frac12 mt^2 \leq x < (u_2+c_2)t + \frac12 mt^2$}\,,\\
     24\frac{1}{9g} \left( \frac{x}{t} + 2c_0 - \frac12 mt \right)^2 & \textrm{if $(u_2+c_2)t + \frac12 mt^2 \leq x < c_0 t + \frac12 mt^2$}\,,\\
     25h_0 & \textrm{if $x \geq c_0 t + \frac12 mt^2$}\,, \\
     26\end{array} \right.
     27\end{equation}
     28and
     29\begin{equation}
     30u(x,t) = \left\{ \begin{array}{ll}
     31mt & \textrm{if $x < \sigma t + \frac12 mt^2$}\,,\\
     32u_2+mt & \textrm{if $ \sigma t + \frac12 mt^2 \leq x < (u_2+c_2)t + \frac12 mt^2$}\,,\\
     33\frac23 \left( \frac{x}{t} - c_0 + mt \right) & \textrm{if $(u_2+c_2)t + \frac12 mt^2 \leq x < c_0 t + \frac12 mt^2$}\,,\\
     34mt & \textrm{if $x \geq c_0 t + \frac12 mt^2$}\,, \\ \end{array} \right.
     35\end{equation}
     36for time $t>0$\,. Here $u_2$\,, $c_2$\,, and $\sigma$ are the solutions of the three simultaneous equations
     37\begin{equation}
     38u_2  = \sigma - \frac{c_1^2}{4\sigma} \left(1+\sqrt{1+8\left( \frac{\sigma}{c_1} \right)^2}     \right),
     39\end{equation}
     40\begin{equation}
     41c_2 = c_1 \sqrt{\frac12 \left(\sqrt{1+  8 \left(\frac{\sigma}{c_1}\right)^2}-1  \right)},
     42\end{equation}
     43and
     44\begin{equation}
     45-2c_0 = u_2 -2c_2.
     46\end{equation}
     47The value of $h_2$ is calculated using relation $c_2=\sqrt{gh_2}$\,.
     48Here $m=-g\tan{\theta}+F$, where $\tan{\theta}$ is the slope of the topography. Variable $F$ is the Coulomb-type friction given by
     49\begin{equation}
     50F=g \cos^2{\theta} \tan{\delta},
     51\end{equation}
     52in which $\tan{\delta}$ is a given value of friction slope such that $\tan{\delta} \leq \tan{\theta}$.
     53
     54
    555
    656\subsection{Results}
    757
    8 
    9 We should see excellent agreement between the analytical and numerical solutions.
     58For our test, we consider $h_0=20$ and $h_1=10$ in (\ref{eq:dap_init}).
     59The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. We should see excellent agreement between the analytical and numerical solutions.
    1060
    1161\begin{figure}[h]
Note: See TracChangeset for help on using the changeset viewer.