Changeset 8723
- Timestamp:
- Mar 5, 2013, 1:42:57 AM (12 years ago)
- Location:
- trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_wet
- Files:
-
- 1 added
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_wet/numerical_avalanche_wet.py
r8643 r8723 157 157 158 158 159 160 #------------------------------------------------------------------------------ 161 # Produce a documentation of parameters 162 #------------------------------------------------------------------------------ 163 parameter_file=open('parameters.tex', 'w') 164 parameter_file.write('\\begin{verbatim}\n') 165 from pprint import pprint 166 pprint(domain.get_algorithm_parameters(),parameter_file,indent=4) 167 parameter_file.write('\\end{verbatim}\n') 168 parameter_file.close() 169 159 170 #------------------------------------------------------------------------------ 160 171 # Evolve system through time -
trunk/anuga_core/validation_tests/Tests/Analytical_exact/avalanche_wet/results.tex
r8643 r8723 2 2 \section{Avalanche involving a shock wave} 3 3 4 An avalanche test problem involving a shock wave. Here debris is approximated as water. The simulation should show a rarefaction fan and a shock wave. 4 We consider an avalanche involving a shock wave. 5 This problem is similar to dam break on wet areas, and so, it involves a shock. We consider a flat topography with positive slope. Shallow water approach is used to solve the problem. The analytical solution of this problem was derived by Mungkasi and Roberts~\cite{MR2012PAAG}. This shallow water approach was also implemented by a number of researchers, such as Mangeney et al.~\cite{MHR2000} and Naaim et al.~\cite{NVC1997}. The simulation should show a rarefaction and a shock. 6 7 8 9 The initial condition is 10 \begin{equation} \label{eq:dap_init} 11 u(x,0)=0, ~~v(x,y)=0, ~~\textrm{and}~~ 12 h(x,0) = \left\{ \begin{array}{ll} 13 h_1 & \textrm{if $x < 0$}\\ 14 h_0 & \textrm{if $x > 0$}\\ 15 \end{array} \right. 16 \end{equation} 17 where $h_0>h_1>0$. The topography is a flat bed with positive slope. Note that when $h_1=0$, the problem becomes avalanche involving a dry area~\cite{MR2011DA}. 18 19 The analytical solution~\cite{MR2012PAAG} at time $t>0$ is 20 \begin{equation} 21 h(x,t) = \left\{ \begin{array}{ll} 22 h_1 & \textrm{if $x < \sigma t + \frac12 mt^2$}\,,\\ 23 h_2 & \textrm{if $ \sigma t + \frac12 mt^2 \leq x < (u_2+c_2)t + \frac12 mt^2$}\,,\\ 24 \frac{1}{9g} \left( \frac{x}{t} + 2c_0 - \frac12 mt \right)^2 & \textrm{if $(u_2+c_2)t + \frac12 mt^2 \leq x < c_0 t + \frac12 mt^2$}\,,\\ 25 h_0 & \textrm{if $x \geq c_0 t + \frac12 mt^2$}\,, \\ 26 \end{array} \right. 27 \end{equation} 28 and 29 \begin{equation} 30 u(x,t) = \left\{ \begin{array}{ll} 31 mt & \textrm{if $x < \sigma t + \frac12 mt^2$}\,,\\ 32 u_2+mt & \textrm{if $ \sigma t + \frac12 mt^2 \leq x < (u_2+c_2)t + \frac12 mt^2$}\,,\\ 33 \frac23 \left( \frac{x}{t} - c_0 + mt \right) & \textrm{if $(u_2+c_2)t + \frac12 mt^2 \leq x < c_0 t + \frac12 mt^2$}\,,\\ 34 mt & \textrm{if $x \geq c_0 t + \frac12 mt^2$}\,, \\ \end{array} \right. 35 \end{equation} 36 for time $t>0$\,. Here $u_2$\,, $c_2$\,, and $\sigma$ are the solutions of the three simultaneous equations 37 \begin{equation} 38 u_2 = \sigma - \frac{c_1^2}{4\sigma} \left(1+\sqrt{1+8\left( \frac{\sigma}{c_1} \right)^2} \right), 39 \end{equation} 40 \begin{equation} 41 c_2 = c_1 \sqrt{\frac12 \left(\sqrt{1+ 8 \left(\frac{\sigma}{c_1}\right)^2}-1 \right)}, 42 \end{equation} 43 and 44 \begin{equation} 45 -2c_0 = u_2 -2c_2. 46 \end{equation} 47 The value of $h_2$ is calculated using relation $c_2=\sqrt{gh_2}$\,. 48 Here $m=-g\tan{\theta}+F$, where $\tan{\theta}$ is the slope of the topography. Variable $F$ is the Coulomb-type friction given by 49 \begin{equation} 50 F=g \cos^2{\theta} \tan{\delta}, 51 \end{equation} 52 in which $\tan{\delta}$ is a given value of friction slope such that $\tan{\delta} \leq \tan{\theta}$. 53 54 5 55 6 56 \subsection{Results} 7 57 8 9 We should see excellent agreement between the analytical and numerical solutions. 58 For our test, we consider $h_0=20$ and $h_1=10$ in (\ref{eq:dap_init}). 59 The following figures show the stage, $x$-momentum, and $x$-velocity at several instants of time. We should see excellent agreement between the analytical and numerical solutions. 10 60 11 61 \begin{figure}[h]
Note: See TracChangeset
for help on using the changeset viewer.